An introduction to econometric applications of empirical process theory for dependent random variables

This paper discusses some uses in econometrics of empirical process theory for dependent rendom variables. Examples considered include non-standard parametric hypotheses tests and semiparametric estimation. The application of bracketing functional limit results is discussed in some detail

[1]  D. Andrews Tests for Parameter Instability and Structural Change with Unknown Change Point , 1993 .

[2]  Adonis Yatchew,et al.  Nonparametric Regression Tests Based on Least Squares , 1992, Econometric Theory.

[3]  Yoon-Jae Whang,et al.  Tests of specification for parametric and semiparametric models , 1993 .

[4]  M. Ossiander,et al.  A Central Limit Theorem Under Metric Entropy with $L_2$ Bracketing , 1987 .

[5]  Hung Man Tong,et al.  Threshold models in non-linear time series analysis. Lecture notes in statistics, No.21 , 1983 .

[6]  D. Andrews Generic Uniform Convergence , 1992, Econometric Theory.

[7]  Ariel Pakes,et al.  A limit theorem for a smooth class of semiparametric estimators , 1995 .

[8]  D. Pollard,et al.  An introduction to functional central limit theorems for dependent stochastic processes , 1994 .

[9]  Donald W. K. Andrews,et al.  An empirical process central limit theorem for dependent non-identically distributed random variables , 1989 .

[10]  W. Newey,et al.  16 Efficient estimation of models with conditional moment restrictions , 1993 .

[11]  R. C. Bradley Basic Properties of Strong Mixing Conditions , 1985 .

[12]  T. Bollerslev,et al.  Generalized autoregressive conditional heteroskedasticity , 1986 .

[13]  James D. Hamilton A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle , 1989 .

[14]  Simon M. Potter A Nonlinear Approach to U.S. GNP , 1993 .

[15]  J. Horowitz A Smoothed Maximum Score Estimator for the Binary Response Model , 1992 .

[16]  I. Ibragimov,et al.  Independent and stationary sequences of random variables , 1971 .

[17]  Maxwell B. Stinchcombe,et al.  Adaptive Efficient Weighted Least Squares With Dependent Observations , 1991 .

[18]  Jeffrey M. Wooldridge,et al.  A Test for Functional Form Against Nonparametric Alternatives , 1992, Econometric Theory.

[19]  S. Levental A uniform CLT for uniformly bounded families of martingale differences , 1989 .

[20]  Joel L. Horowitz,et al.  Semiparametric M-Estimation of Censored Linear Regression Models , 1988 .

[21]  A. Wald Tests of statistical hypotheses concerning several parameters when the number of observations is large , 1943 .

[22]  R. Fortet,et al.  Sur le mélange d'un processus ARMA vectoriel , 1986 .

[23]  D. Pollard,et al.  Cube Root Asymptotics , 1990 .

[24]  D. Andrews,et al.  Optimal Tests When a Nuisance Parameter Is Present Only Under the Alternative , 1992 .

[25]  Anil K. Bera,et al.  A test for conditional heteroskedasticity in time series models , 1992 .

[26]  Victor Solo,et al.  Asymptotics for Linear Processes , 1992 .

[27]  P. Robinson Asymptotically efficient estimation in the presence of heteroskedasticity of unknown form , 1987 .

[28]  R. Davies Hypothesis testing when a nuisance parameter is present only under the alternative , 1977 .

[29]  R. Dudley Central Limit Theorems for Empirical Measures , 1978 .

[30]  R. Engle Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .