Cost Aggregation Table: Cost Aggregation Method Using Summed Area Table Scheme for Dense Stereo Correspondence

The stereo matching algorithms usually do not satisfy the performance of both accuracy and complexity. The semi-global matching (SGM) is the most efficient method among the stereo matching algorithms. However, it still does not utilize the whole image information to estimate the disparity values. In this paper, we proposed a new concept of the cost aggregation method using summed area table (SAT) scheme. The SAT is the efficient algorithm for summing intensities on the rectangular area in the image. Using four kinds of the SAT arrays (we called these arrays cost aggregation table (CAT)), it is possible to estimate the disparity values with aggregating every cost in the image. We tested our algorithm using the KITTI vision benchmark suite, the result shows that our algorithm is superior for disparity accuracy compared to the SGM. We expect that the CAT can be an alternative cost aggregation method to the SGM in the near future.

[1]  Raúl Rojas,et al.  Weighted Semi-Global Matching and Center-Symmetric Census Transform for Robust Driver Assistance , 2013, CAIP.

[2]  Ines Ernst,et al.  Mutual Information Based Semi-Global Stereo Matching on the GPU , 2008, ISVC.

[3]  Allen R. Hanson,et al.  Computer Vision Systems , 1978 .

[4]  Uwe Franke,et al.  Performance Evaluation of Stereo Algorithms for Automotive Applications , 2009, ICVS.

[5]  Raúl Rojas,et al.  Large scale Semi-Global Matching on the CPU , 2014, 2014 IEEE Intelligent Vehicles Symposium Proceedings.

[6]  Richard Szeliski,et al.  A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms , 2001, International Journal of Computer Vision.

[7]  Vittorio Ferrari,et al.  Appearance Sharing for Collective Human Pose Estimation , 2012, ACCV.

[8]  G. Dimitrakopoulos,et al.  Intelligent Transportation Systems , 2010, IEEE Vehicular Technology Magazine.

[9]  Reinhard Klette,et al.  Inclusion of a Second-Order Prior into Semi-Global Matching , 2009, PSIVT.

[10]  Heiko Hirschmüller,et al.  Stereo Processing by Semiglobal Matching and Mutual Information , 2008, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Sergiu Nedevschi,et al.  SORT-SGM: Subpixel Optimized Real-Time Semiglobal Matching for Intelligent Vehicles , 2012, IEEE Transactions on Vehicular Technology.

[12]  Dariu Gavrila,et al.  Real-time dense stereo for intelligent vehicles , 2006, IEEE Transactions on Intelligent Transportation Systems.

[13]  Luis Rueda,et al.  Advances in Image and Video Technology, Second Pacific Rim Symposium, PSIVT 2007, Santiago, Chile, December 17-19, 2007, Proceedings , 2007, PSIVT.

[14]  Martin Humenberger,et al.  A census-based stereo vision algorithm using modified Semi-Global Matching and plane fitting to improve matching quality , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Workshops.

[15]  Reinhard Klette,et al.  Performance of Correspondence Algorithms in Vision-Based Driver Assistance Using an Online Image Sequence Database , 2011, IEEE Transactions on Vehicular Technology.

[16]  Reinhard Klette,et al.  Iterative Semi-Global Matching for Robust Driver Assistance Systems , 2012, ACCV.

[17]  Andreas Geiger,et al.  Vision meets robotics: The KITTI dataset , 2013, Int. J. Robotics Res..

[18]  Johannes Stallkamp,et al.  Real-time stereo vision: Optimizing Semi-Global Matching , 2013, 2013 IEEE Intelligent Vehicles Symposium (IV).

[19]  Reinhard Klette,et al.  Illumination Invariant Cost Functions in Semi-Global Matching , 2010, ACCV Workshops.

[20]  Néstor Morales,et al.  Performance analysis of stereo reconstruction algorithms , 2013, 16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013).

[21]  Andreas Geiger,et al.  Are we ready for autonomous driving? The KITTI vision benchmark suite , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[22]  Franklin C. Crow,et al.  Summed-area tables for texture mapping , 1984, SIGGRAPH.

[23]  Peter Pirsch,et al.  Evaluation of Penalty Functions for Semi-Global Matching Cost Aggregation , 2012 .

[24]  Reinhard Koch,et al.  Computer Vision – ACCV 2010 Workshops , 2010, Lecture Notes in Computer Science.

[25]  Peter Pirsch,et al.  Real-time stereo vision system using semi-global matching disparity estimation: Architecture and FPGA-implementation , 2010, 2010 International Conference on Embedded Computer Systems: Architectures, Modeling and Simulation.

[26]  D. B. Davis,et al.  Intel Corp. , 1993 .

[27]  Stefan K. Gehrig,et al.  A Real-Time Low-Power Stereo Vision Engine Using Semi-Global Matching , 2009, ICVS.