Improving System Identification Using Clustering

System identification involves identification of a behavioral model that best explains the measured behavior of a structure. This research uses a strategy of generation and iterative filtering of multiple candidate models for system identification. The task of model filtering is supported by measurement-interpretation cycles. During each cycle, the location for subsequent measurement is chosen using the predictions of current candidate models. In this paper, data mining techniques are proposed to support such measurement-interpretation cycles. Candidate models, representing possible states of a structure, are clustered using a technique that combines principal component analysis and K -means clustering. Representative models of each cluster are used to place sensors for subsequent measurement on the basis of the entropy of their predictions. Results show that clustering is necessary to identify the different groups of candidate models. The entropy of predictions is found to be a valid stopping criterion f...

[1]  Heng Tao Shen,et al.  Principal Component Analysis , 2009, Encyclopedia of Biometrics.

[2]  Costas Papadimitriou,et al.  Optimal sensor location methodology for structural identification and damage detection. , 2006 .

[3]  Lennart Ljung,et al.  System identification (2nd ed.): theory for the user , 1999 .

[4]  Sergio William Sedas-Gersey Algorithms for automatic sensor placement to acquire complete and accurate information , 1993 .

[5]  Siddheswar Ray,et al.  Determination of Number of Clusters in K-Means Clustering and Application in Colour Image Segmentation , 2000 .

[6]  Ian H. Witten,et al.  Data mining: practical machine learning tools and techniques with Java implementations , 2002, SGMD.

[7]  Yi-Qing Ni,et al.  Modeling of Temperature–Frequency Correlation Using Combined Principal Component Analysis and Support Vector Regression Technique , 2007 .

[8]  Masoud Sanayei,et al.  STRUCTURAL MODEL UPDATING USING EXPERIMENTAL STATIC MEASUREMENTS , 1997 .

[9]  Miguel J. Bagajewicz,et al.  Cost-optimal design of reliable sensor networks , 2000 .

[10]  Ian F. C. Smith,et al.  Configuration of measurement systems using Shannon's entropy function , 2005 .

[11]  Cregg K. Cowan Model-based synthesis of sensor location , 1988, Proceedings. 1988 IEEE International Conference on Robotics and Automation.

[12]  Marti A. Hearst Clustering versus faceted categories for information exploration , 2006, Commun. ACM.

[13]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[14]  L Padula Sharon,et al.  Optimization Strategies for Sensor and Actuator Placement , 1999 .

[15]  Ian F. C. Smith,et al.  Rational design of measurement systems using information science , 2006 .

[16]  Jin-Hak Yi,et al.  Joint damage assessment of framed structures using a neural networks technique , 2001 .

[17]  Keith Worden,et al.  Optimal sensor placement for fault detection , 2001 .

[18]  Ian F. C. Smith,et al.  Improving Knowledge of Structural System Behavior through Multiple Models , 2008 .

[19]  J. Beck,et al.  Entropy-Based Optimal Sensor Location for Structural Model Updating , 2000 .

[20]  David L. Hall,et al.  Customer-Driven Sensor Management , 2006, IEEE Intelligent Systems.

[21]  Ian F. C. Smith,et al.  Decision support through multiple models and probabilistic search , 2000 .

[22]  Lucio Soibelman,et al.  Data Preparation Process for Construction Knowledge Generation through Knowledge Discovery in Databases , 2002 .

[23]  Hani G. Melhem,et al.  PREDICTION OF REMAINING SERVICE LIFE OF BRIDGE DECKS USING MACHINE LEARNING , 2003 .

[24]  Ian F. C. Smith,et al.  A comprehensive validity index for clustering , 2008, Intell. Data Anal..

[25]  David Y. Fong,et al.  Wireless Sensor Networks , 2003 .

[26]  Christine W. Chan,et al.  Applications of data analysis techniques for oil production prediction , 2005, Eng. Appl. Artif. Intell..

[27]  Juan José Rodríguez Diez,et al.  Enhancing Consistency Based Diagnosis with Machine Learning Techniques , 2003, CAEPIA.

[28]  Qiang Yang,et al.  Integrating hidden Markov models and spectral analysis for sensory time series clustering , 2005, Fifth IEEE International Conference on Data Mining (ICDM'05).

[29]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[30]  Ian F. C. Smith,et al.  A direct stochastic algorithm for global search , 2003, Appl. Math. Comput..

[31]  Sankar K. Pal,et al.  Pattern Recognition Algorithms for Data Mining , 2004 .

[32]  Eric SanJuan,et al.  Text mining without document context , 2006, Inf. Process. Manag..

[33]  Andrew R. Webb,et al.  Statistical Pattern Recognition , 1999 .

[34]  Steven J. Fenves,et al.  Applying AI clustering to engineering tasks , 1993, IEEE Expert.

[35]  Ahmet E. Aktan,et al.  Limitations in Structural Identification of Large Constructed Structures , 2007 .

[36]  Ian F. C. Smith,et al.  Data mining techniques for improving the reliability of system identification , 2005, Adv. Eng. Informatics.

[37]  J M W Brownjohn,et al.  Structural health monitoring of civil infrastructure , 2007, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[38]  Ian F. C. Smith,et al.  System Identification through Model Composition and Stochastic Search , 2005 .

[39]  Burcu Akinci,et al.  A formalism for utilization of sensor systems and integrated project models for active construction quality control , 2006 .

[40]  Ning Xiong,et al.  Multi-sensor management for information fusion: issues and approaches , 2002, Inf. Fusion.

[41]  Ian F. C. Smith,et al.  Model Identification of Bridges Using Measurement Data , 2005 .

[42]  K. Hjelmstad,et al.  Parameter Estimation of Structures from Static Response. I. Computational Aspects , 1994 .

[43]  Jaime A. Camelio,et al.  Sensor Placement for Effective Diagnosis of Multiple Faults in Fixturing of Compliant Parts , 2005 .

[44]  Michele Meo,et al.  On the optimal sensor placement techniques for a bridge structure , 2005 .

[45]  Hesheng Tang,et al.  H∞ Filtering in Neural Network Training and Pruning with Application to System Identification , 2007 .