Experimental and numerical studies of geosynthetic-reinforced sand slopes loaded with a footing

This paper presents the results of a series of plane strain model tests carried out on both reinforced and unreinforced sand slopes loaded with a rigid strip footing. The objectives of this study are to (i) determine the influence of geosynthetic reinforcement on the bearing-capacity characteristics of the footing on slope, (ii) understand the failure mechanism of reinforced slopes, and (iii) suggest an optimum geometry of reinforcement placement. The investigations were carried out by varying the edge distance of the footing for three different slope angles and three different types of geosynthetic. It is shown that the load-settlement behaviour and ultimate bearing capacity of the footing can be considerably improved by the inclusion of a reinforcing layer at the appropriate location in the fill slope. The optimum depth of the reinforcement layer, which resulted in maximum bearing capacity ratio (BCR), is found to be 0.5 times the width of the footing. It is also shown that for both reinforced and unrei...