Hyperspectral unmixing using an active set algorithm

The inversion problem in hyperspectral unmixing involves solving a constrained least-squares problem. Several solutions have been proposed, often based on convex optimization techniques, such as alternating optimization strategies, projection onto convex sets, augmenting positively constrained optimization algorithms, or quadratic programming. One of the most popular techniques, fully-constrained least-squares unmixing, is based on extending the Lawson-Hanson non-negatively constrained least-squares algorithm with an extra weighted term that takes the sum-to-one constraint into account. In this paper, we present an alternative active-set algorithm, inspired by the Lawson-Hanson algorithm, which solves the unmixing problem exactly, and does not require any weighting parameters. The resulting algorithm always finds the correct solution, and works an order of magnitude faster than the fully-constrained least-squares algorithm.

[1]  Rob Heylen,et al.  Fully Constrained Least Squares Spectral Unmixing by Simplex Projection , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[2]  Sen Jia,et al.  Constrained Nonnegative Matrix Factorization for Hyperspectral Unmixing , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[3]  Charles L. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.

[4]  José M. Bioucas-Dias,et al.  Vertex component analysis: a fast algorithm to unmix hyperspectral data , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[5]  Rob Heylen,et al.  On Using Projection Onto Convex Sets for Solving the Hyperspectral Unmixing Problem , 2013, IEEE Geoscience and Remote Sensing Letters.

[6]  José M. Bioucas-Dias,et al.  Alternating direction algorithms for constrained sparse regression: Application to hyperspectral unmixing , 2010, 2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing.

[7]  Stefan A. Robila,et al.  Considerations on Parallelizing Nonnegative Matrix Factorization for Hyperspectral Data Unmixing , 2009, IEEE Geoscience and Remote Sensing Letters.

[8]  Le Wang,et al.  Fully Constrained Linear Spectral Unmixing: Analytic Solution Using Fuzzy Sets , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[9]  Chein-I Chang,et al.  Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery , 2001, IEEE Trans. Geosci. Remote. Sens..

[10]  C. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.