Comparative genomics of koala, cattle and sheep strains of Chlamydia pecorum

[1]  G. Myers,et al.  Genome sequencing and comparative analysis of three Chlamydia pecorum strains associated with different pathogenic outcomes , 2014, BMC Genomics.

[2]  J. Callaghan,et al.  Genetic diversity of Chlamydia pecorum strains in wild koala locations across Australia and the implications for a recombinant C. pecorum major outer membrane protein based vaccine. , 2013, Veterinary microbiology.

[3]  P. Timms,et al.  Recent advances in understanding the biology, epidemiology and control of chlamydial infections in koalas. , 2013, Veterinary microbiology.

[4]  F. Frentiu,et al.  Multilocus Sequence Analysis Provides Insights into Molecular Epidemiology of Chlamydia pecorum Infections in Australian Sheep, Cattle, and Koalas , 2013, Journal of Clinical Microbiology.

[5]  T. Elsasser,et al.  Asymptomatic Endemic Chlamydia pecorum Infections Reduce Growth Rates in Calves by up to 48 Percent , 2012, PloS one.

[6]  R. Ferreira,et al.  Directional Evolution of Chlamydia trachomatis towards Niche-Specific Adaptation , 2012, Journal of bacteriology.

[7]  H. Saluz,et al.  The Chlamydia psittaci Genome: A Comparative Analysis of Intracellular Pathogens , 2012, PloS one.

[8]  Julian Parkhill,et al.  Whole genome analysis of diverse Chlamydia trachomatis strains identifies phylogenetic relationships masked by current clinical typing , 2012, Nature Genetics.

[9]  L. A. Basso,et al.  Molecular, kinetic and thermodynamic characterization of Mycobacterium tuberculosis orotate phosphoribosyltransferase. , 2012, Molecular bioSystems.

[10]  P. Timms,et al.  Using quantitative polymerase chain reaction to correlate Chlamydia pecorum infectious load with ocular, urinary and reproductive tract disease in the koala (Phascolarctos cinereus). , 2011, Australian veterinary journal.

[11]  Nicola K. Petty,et al.  BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons , 2011, BMC Genomics.

[12]  G. Myers,et al.  Genome Sequence of the Obligate Intracellular Animal Pathogen Chlamydia pecorum E58 , 2011, Journal of bacteriology.

[13]  James W. Marsh,et al.  Novel molecular markers of Chlamydia pecorum genetic diversity in the koala (Phascolarctos cinereus) , 2011, BMC Microbiology.

[14]  Mitchell J. Sullivan,et al.  Easyfig: a genome comparison visualizer , 2011, Bioinform..

[15]  Howard Ochman,et al.  The Extinction Dynamics of Bacterial Pseudogenes , 2010, PLoS genetics.

[16]  G. Myers,et al.  Comparison of koala LPCoLN and human strains of Chlamydia pneumoniae highlights extended genetic diversity in the species , 2010, BMC Genomics.

[17]  Christina Toft,et al.  Evolutionary microbial genomics: insights into bacterial host adaptation , 2010, Nature Reviews Genetics.

[18]  N. Perna,et al.  progressiveMauve: Multiple Genome Alignment with Gene Gain, Loss and Rearrangement , 2010, PloS one.

[19]  H. Caldwell,et al.  Biological Characterization of Chlamydia trachomatis Plasticity Zone MACPF Domain Family Protein CT153 , 2010, Infection and Immunity.

[20]  Jun Yu,et al.  KaKs_Calculator 2.0: A Toolkit Incorporating Gamma-Series Methods and Sliding Window Strategies , 2010, Genom. Proteom. Bioinform..

[21]  Ken Chen,et al.  VarScan: variant detection in massively parallel sequencing of individual and pooled samples , 2009, Bioinform..

[22]  Siu-Ming Yiu,et al.  SOAP2: an improved ultrafast tool for short read alignment , 2009, Bioinform..

[23]  A. Pospischil,et al.  Molecular evidence for chlamydial infections in the eyes of sheep. , 2009, Veterinary microbiology.

[24]  G. Myers,et al.  Divergence without difference: phylogenetics and taxonomy of Chlamydia resolved. , 2009, FEMS immunology and medical microbiology.

[25]  G. Myers,et al.  Preliminary phylogenetic identification of virulent Chlamydophila pecorum strains. , 2008, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[26]  R. Stephens,et al.  Chlamydial Effector Proteins Localized to the Host Cell Cytoplasmic Compartment , 2008, Infection and Immunity.

[27]  B. Duim,et al.  Evaluation of a Chlamydophila psittaci Infection Diagnostic Platform for Zoonotic Risk Assessment , 2007, Journal of Clinical Microbiology.

[28]  Rodrigo Lopez,et al.  Clustal W and Clustal X version 2.0 , 2007, Bioinform..

[29]  R. Stephens,et al.  Chlamydial Type III Secretion System Is Encoded on Ten Operons Preceded by Sigma 70-Like Promoter Elements , 2006, Journal of bacteriology.

[30]  D. Crane,et al.  Inhibition of Chlamydiae by Primary Alcohols Correlates with the Strain-Specific Complement of Plasticity Zone Phospholipase D Genes , 2006, Infection and Immunity.

[31]  G. Schulz,et al.  Structural basis for the function of Clostridium difficile toxin B. , 2005, Journal of molecular biology.

[32]  Matthew Berriman,et al.  ACT: the Artemis comparison tool , 2005, Bioinform..

[33]  B. Barrell,et al.  The Chlamydophila abortus genome sequence reveals an array of variable proteins that contribute to interspecies variation. , 2005, Genome research.

[34]  Christophe Fraser,et al.  Neutral microepidemic evolution of bacterial pathogens. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[35]  B. Kaltenboeck,et al.  High Prevalence of Natural Chlamydophila Species Infection in Calves , 2004, Journal of Clinical Microbiology.

[36]  P. Timms,et al.  Chlamydial Persistence: beyond the Biphasic Paradigm , 2004, Infection and Immunity.

[37]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[38]  T. Meyer,et al.  From the inside out – processing of the Chlamydial autotransporter PmpD and its role in bacterial adhesion and activation of human host cells , 2004, Molecular microbiology.

[39]  G. Storz,et al.  The SufE Protein and the SufBCD Complex Enhance SufS Cysteine Desulfurase Activity as Part of a Sulfur Transfer Pathway for Fe-S Cluster Assembly in Escherichia coli* , 2003, Journal of Biological Chemistry.

[40]  T. Hackstadt,et al.  Chlamydia trachomatis type III secretion: evidence for a functional apparatus during early‐cycle development , 2003, Molecular microbiology.

[41]  R. Giegerich,et al.  GenDB--an open source genome annotation system for prokaryote genomes. , 2003, Nucleic acids research.

[42]  L. Hurst The Ka/Ks ratio: diagnosing the form of sequence evolution. , 2002, Trends in genetics : TIG.

[43]  I. Henderson,et al.  Polymorphic proteins of Chlamydia spp.--autotransporters beyond the Proteobacteria. , 2001, Trends in microbiology.

[44]  John P. Huelsenbeck,et al.  MRBAYES: Bayesian inference of phylogenetic trees , 2001, Bioinform..

[45]  R. Bush,et al.  Predicting adaptive evolution , 2001, Nature Reviews Genetics.

[46]  R. Stephens,et al.  Chlamydia outer membrane protein discovery using genomics. , 2001, Current opinion in microbiology.

[47]  S. Salzberg,et al.  Genome sequences of Chlamydia trachomatis MoPn and Chlamydia pneumoniae AR39. , 2000, Nucleic acids research.

[48]  L. Petit,et al.  Bacterial toxins modifying the actin cytoskeleton. , 1999, International microbiology : the official journal of the Spanish Society for Microbiology.

[49]  P. Timms,et al.  Epizootiology of Chlamydia infections in two free-range koala populations. , 1999, Veterinary microbiology.

[50]  S. Munro,et al.  A Common Motif of Eukaryotic Glycosyltransferases Is Essential for the Enzyme Activity of Large Clostridial Cytotoxins* , 1998, The Journal of Biological Chemistry.

[51]  G. Mcclarty,et al.  Purine metabolism by intracellular Chlamydia psittaci , 1993, Journal of bacteriology.

[52]  G. Mcclarty,et al.  Pyrimidine metabolism by intracellular Chlamydia psittaci , 1993 .

[53]  H. Fukushi,et al.  Proposal of Chlamydia pecorum sp. nov. for Chlamydia strains derived from ruminants. , 1992, International journal of systematic bacteriology.

[54]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[55]  C. Luo,et al.  A new method for estimating synonymous and nonsynonymous rates of nucleotide substitution considering the relative likelihood of nucleotide and codon changes. , 1985, Molecular biology and evolution.

[56]  K. Handasyde,et al.  Chlamydia infection and infertility in the female koala (Phascolarctos cinereus) , 1984, Veterinary Record.

[57]  R. Levy,et al.  Sucrose phosphate glutamate for combined transport of chlamydial and viral specimens. , 1984, American journal of clinical pathology.

[58]  O. Gascuel,et al.  Estimating maximum likelihood phylogenies with PhyML. , 2009, Methods in molecular biology.

[59]  Claude-Alain H. Roten,et al.  Fast and accurate short read alignment with Burrows–Wheeler transform , 2009, Bioinform..

[60]  Gang Wang,et al.  ConiferEST: an integrated bioinformatics system for data reprocessing and mining of conifer expressed sequence tags (ESTs) , 2007, BMC Genomics.

[61]  A. Pospischil,et al.  Molecular evidence to support the expansion of the hostrange of Chlamydophila pneumoniae to include reptiles as well as humans, horses, koalas and amphibians. , 2002, Systematic and applied microbiology.

[62]  M. Clarkson,et al.  Analyses of the genomes of chlamydial isolates from ruminants and pigs support the adoption of the new species Chlamydia pecorum. , 1996, International journal of systematic bacteriology.