Spectral Evolution of an Earth-like Planet

We have developed a characterization of the geological evolution of the Earth's atmosphere and surface in order to model the observable spectra of an Earth-like planet through its geological history. These calculations are designed to guide the interpretation of an observed spectrum of such a planet by future instruments that will characterize exoplanets. Our models focus on planetary environmental characteristics whose resultant spectral features can be used to imply habitability or the presence of life. These features are generated by H2O, CO2, CH4, O2, O3, N2O, and vegetation-like surface albedos. We chose six geological epochs to characterize. These epochs exhibit a wide range in abundance for these molecules, ranging from a CO2-rich early atmosphere, to a CO2/CH4-rich atmosphere around 2 billion years ago, to a present-day atmosphere. We analyzed the spectra to quantify the strength of each important spectral feature in both the visible and thermal infrared spectral regions, and the resolutions required to optimally detect the features for each epoch. We find a wide range of spectral resolutions required for observing the different features. For example, H2O and O3 can be observed with relatively low resolution, while O2 and N2O require higher resolution. We also find that the inclusion of clouds in our models significantly affects both the strengths of all spectral features and the resolutions required to observe all these.

[1]  James F. Kasting,et al.  HABITABLE ZONES AROUND LOW MASS STARS AND THE SEARCH FOR EXTRATERRESTRIAL LIFE , 1997, Origins of life and evolution of the biosphere.

[2]  Michael D. King,et al.  Determination of the Spectral Absorption of Solar Radiation by Marine Stratocumulus Clouds from Airborne Measurements within Clouds , 1990 .

[3]  J. Kasting,et al.  Life and the Evolution of Earth's Atmosphere , 2002, Science.

[4]  M. Papagiannis,et al.  Highlights of the Proceedings - Strategies for the Search for Life in the Universe , 1980 .

[5]  A. Oparin [The origin of life]. , 1938, Nordisk medicin.

[6]  P. Cloud A working model of the primitive Earth , 1972 .

[7]  R. Gilliland,et al.  Detection of an Extrasolar Planet Atmosphere , 2001, astro-ph/0111544.

[8]  J. Waite,et al.  Atmospheres in the solar system : comparative aeronomy , 2002 .

[9]  Yasuhiro Sasano,et al.  Observations of OH, HO2, H2O, and O3 in the upper stratosphere: Implications for HOx photochemistry , 1998 .

[10]  D. Segrè,et al.  Supporting Online Material Materials and Methods Tables S1 and S2 References the Effect of Oxygen on Biochemical Networks and the Evolution of Complex Life , 2022 .

[11]  D. Piperno,et al.  Dinosaurs Dined on Grass , 2005, Science.

[12]  Lisa Kaltenegger,et al.  The Darwin mission: Search for extra-solar planets , 2005 .

[13]  D. Canfield Biochemistry: Gas with an ancient history , 2006, Nature.

[14]  J. Kasting,et al.  New insights into Archean sulfur cycle from mass-independent sulfur isotope records from the Hamersley Basin, Australia , 2003 .

[15]  Franck Selsis,et al.  Signature of life on exoplanets: Can Darwin produce false positive detections? , 2002 .

[16]  Martin G. Cohen,et al.  Ozone concentrations and ultraviolet fluxes on Earth-like planets around other stars. , 2003, Astrobiology.

[17]  The Vegetation Red Edge Spectroscopic Feature as a Surface Biomarker , 2002, astro-ph/0212550.

[18]  S. Seager,et al.  Characterization of extrasolar terrestrial planets from diurnal photometric variability , 2001, Nature.

[19]  H. D. Holland,et al.  The oxygenation of the atmosphere and oceans , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[20]  J. Kasting Evolution of a habitable planet , 2003 .

[21]  Michael A. Arthur,et al.  Methane-rich Proterozoic atmosphere? , 2003 .

[22]  S. Airieau,et al.  Observation of wavelength‐sensitive mass‐independent sulfur isotope effects during SO2 photolysis: Implications for the early atmosphere , 2001 .

[23]  J. Kasting,et al.  Greenhouse warming by CH4 in the atmosphere of early Earth. , 2000, Journal of geophysical research.

[24]  Drake Deming,et al.  Infrared radiation from an extrasolar planet , 2005, Nature.

[25]  S. Roscoe,et al.  Evidence of anoxic to oxic atmospheric change during 2.45-2.22 Ga from lower and upper sub-Huronian paleosols, Canada , 1996 .

[26]  Donald E. Canfield,et al.  The Archean sulfur cycle and the early history of atmospheric oxygen. , 2000, Science.

[27]  J. Kasting,et al.  Habitable zones around main sequence stars. , 1993, Icarus.

[28]  P.R. Lawson The Terrestrial Planet Finder , 2001, 2001 IEEE Aerospace Conference Proceedings (Cat. No.01TH8542).

[29]  D. Wise,et al.  Thermophilic Anaerobic Digestion of Solid Waste for Fuel Gas Production , 1975, Biotechnology and bioengineering.

[30]  Brigitte Schurmann Darwin and astronomy : the infrared space interferometer , 1999 .

[31]  Keita Yamada,et al.  Evidence from fluid inclusions for microbial methanogenesis in the early Archaean era , 2006, Nature.

[32]  J. Schopf,et al.  Microfossils of the Early Archean Apex Chert: New Evidence of the Antiquity of Life , 1993, Science.

[33]  Yuk L. Yung,et al.  Detectability of Red-Edge-shifted Vegetation on Terrestrial Planets Orbiting M Stars , 2006 .

[34]  E. Wright,et al.  Far-infrared observations of Uranus, Neptune, and Ceres , 1978 .

[35]  J. Kasting,et al.  Rise of atmospheric oxygen and the “upside‐down” Archean mantle , 2001 .

[36]  J. Pearl,et al.  Initial data from the Mars Global Surveyor thermal emission spectrometer experiment: Observations of the Earth , 1997 .

[37]  J. P. Laboratory,et al.  High-Contrast Imaging from Space: Speckle Nulling in a Low-Aberration Regime , 2005, astro-ph/0510597.

[38]  Mary Droser,et al.  Late Precambrian Oxygenation; Inception of the Clay Mineral Factory , 2006, Science.

[39]  K. D. McKeegan,et al.  Evidence for life on Earth before 3,800 million years ago , 1996, Nature.

[40]  A. Knoll,et al.  Proterozoic Ocean Chemistry and Evolution: A Bioinorganic Bridge? , 2002, Science.

[41]  S. Ridgway,et al.  Transit, Astrometric, Coronagraphic and Interferometric Exo-planet Studies - Synergy and Complementarity , 2005, Proceedings of the International Astronomical Union.

[42]  Simon A. Wilde,et al.  Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago , 2001, Nature.

[43]  J. Lovelock,et al.  Thermodynamics and the recognition of alien biospheres , 1975, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[44]  D. Canfield A new model for Proterozoic ocean chemistry , 1998, Nature.

[45]  David Charbonneau,et al.  Detection of Thermal Emission from an Extrasolar Planet , 2005 .

[46]  P. R. Goode,et al.  Vegetation Signature in the Observed Globally Integrated Spectrum of Earth Considering Simultaneous Cloud Data: Applications for Extrasolar Planets , 2006, astro-ph/0604420.

[47]  O. Szewczyk,et al.  Discovery of a cool planet of 5.5 Earth masses through gravitational microlensing , 2006, Nature.

[48]  J. Kasting,et al.  UV shielding of NH3 and O2 by organic hazes in the Archean atmosphere , 2001 .

[49]  C. Sagan,et al.  Earth and Mars: Evolution of Atmospheres and Surface Temperatures , 1972, Science.

[50]  M. Thiemens,et al.  Atmospheric influence of Earth's earliest sulfur cycle , 2000, Science.

[51]  P. Falkowski Tracing Oxygen's Imprint on Earth's Metabolic Evolution , 2006, Science.

[52]  J F Nunn,et al.  Evolution of the atmosphere. , 1998, Proceedings of the Geologists' Association. Geologists' Association.

[53]  K. Jucks,et al.  Remote sensing of planetary properties and biosignatures on extrasolar terrestrial planets. , 2002, Astrobiology.

[54]  Wesley A. Traub,et al.  Spectrum of a Habitable World: Earthshine in the Near-Infrared , 2006 .

[55]  Jean Schneider Strategies for the Search of Life in the Universe , 1996 .

[56]  Victoria Meadows,et al.  Biosignatures from Earth-like planets around M dwarfs. , 2005, Astrobiology.

[57]  T. Owen The Search for Early Forms of Life in Other Planetary Systems: Future Possibilities Afforded by Spectroscopic Techniques , 1980 .

[58]  Margaret Turnbull,et al.  Detectability of planetary characteristics in disk-averaged spectra. I: The Earth model. , 2006, Astrobiology.

[59]  J. Kasting,et al.  Synthetic spectra of simulated terrestrial atmospheres containing possible biomarker gases. , 2000, Icarus.

[60]  N. J. Woolf,et al.  The Spectrum of Earthshine: A Pale Blue Dot Observed from the Ground , 2002 .