Mobility in Computer Science and in Membrane Systems

Mathematical models are useful in different fields to provide a deeper and more insightful understanding of various systems and notions. We refer here to the formal description of mobility in computer science. The first formalism in computer science able to describe mobility is the π-calculus [16]. It was followed by ambient calculus [6]. A biologically-inspired version of ambient calculus is given by bioambients [19] and several brane calculi [5]. On the other hand, systems of mobile membranes [13] represent other formalisms with mobility in the framework of membrane computing.

[1]  Shankara Narayanan Krishna Universality results for P systems based on brane calculi operations , 2007, Theor. Comput. Sci..

[2]  Gabriel Ciobanu,et al.  Encoding Mobile Ambients into the pi -Calculus , 2006, Ershov Memorial Conference.

[3]  Davide Sangiorgi,et al.  Mobile safe ambients , 2003, TOPL.

[4]  Luca Cardelli,et al.  Mobile Ambients , 1998, FoSSaCS.

[5]  Teruo Higashino,et al.  Formal Techniques for Networked and Distributed Systems - FORTE 2008, 28th IFIP WG 6.1 International Conference, Tokyo, Japan, June 10-13, 2008, Proceedings , 2008, FORTE.

[6]  Gabriel Ciobanu,et al.  Simple, Enhanced and Mutual Mobile Membranes , 2009, Trans. Comp. Sys. Biology.

[7]  Gabriel Ciobanu,et al.  Turing Completeness Using Three Mobile Membranes , 2009, UC.

[8]  Gheorghe Paun,et al.  Membrane Computing , 2002, Natural Computing Series.

[9]  Gabriel Ciobanu,et al.  On the relationship between membranes and ambients , 2008, Biosyst..

[10]  Luca Cardelli,et al.  Brane Calculi , 2004, CMSB.

[11]  Marian Gheorghe,et al.  Membrane Computing : 11th International Conference, CMC 2010, Jena, Germany, August 24-27, 2010. Revised Selected Papers , 2011 .

[12]  Christian Johansen,et al.  Timers for Distributed Systems , 2006, Electron. Notes Theor. Comput. Sci..

[13]  Ian Stark,et al.  The Continuous pi-Calculus: A Process Algebra for Biochemical Modelling , 2008, CMSB.

[14]  Gheorghe Paun,et al.  The Oxford Handbook of Membrane Computing , 2010 .

[15]  Richard M. Karp,et al.  Turing award lecture , 1985, ACM '85.

[16]  Robin Milner,et al.  Communicating and mobile systems - the Pi-calculus , 1999 .

[17]  Luca Cardelli,et al.  BioAmbients: an abstraction for biological compartments , 2004, Theor. Comput. Sci..

[18]  Gabriel Ciobanu,et al.  Modelling in Molecular Biology , 2004, Natural Computing Series.

[19]  Matthew Hennessy,et al.  A distributed Pi-calculus , 2007 .

[20]  Gabriel Ciobanu,et al.  Enhanced Mobile Membranes: Computability Results , 2010, Theory of Computing Systems.

[21]  Muffy Calder,et al.  Process Algebra Modelling Styles for Biomolecular Processes , 2009, Trans. Comp. Sys. Biology.

[22]  Gheorghe Paun,et al.  P Systems with Mobile Membranes , 2005, Natural Computing.

[23]  Robin Milner,et al.  Theories for the Global Ubiquitous Computer , 2004, FoSSaCS.

[24]  Robin Milner,et al.  Elements of interaction , 1993 .

[25]  Gabriel Ciobanu,et al.  Molecular interaction , 2002, Theor. Comput. Sci..

[26]  Mark A. Hillebrand,et al.  Invariants, Modularity, and Rights , 2009, Ershov Memorial Conference.

[27]  Gabriel Ciobanu,et al.  Timed Mobile Ambients for Network Protocols , 2008, FORTE.

[28]  Faron Moller,et al.  The Mobility Workbench - A Tool for the pi-Calculus , 1994, CAV.

[29]  Robin Milner,et al.  Elements of interaction: Turing award lecture , 1993, CACM.

[30]  Aviv Regev,et al.  The π-calculus as an Abstraction for Biomolecular Systems , 2004 .