Silica burial enhanced by iron limitation in oceanic upwelling margins

[1]  P. Tréguer,et al.  The world ocean silica cycle. , 2013, Annual review of marine science.

[2]  R. Thunell,et al.  Silicic acid biogeochemistry in the Gulf of California: Insights from sedimentary Si isotopes , 2012 .

[3]  Ernie Balcerak Silicic acid biogeochemistry in the Gulf of California , 2012 .

[4]  R. Ganeshram,et al.  High-resolution opal records from the eastern tropical Pacific provide evidence for silicic acid leakage from HNLC regions during glacial periods , 2011 .

[5]  D. M. Nelson,et al.  Metal quotas of plankton in the equatorial Pacific Ocean , 2011 .

[6]  A. Tovar‐Sánchez,et al.  Dissolved iron distributions in the central region of the Gulf of California, México , 2010 .

[7]  Richard A. Krishfield,et al.  Particulate organic carbon fluxes to the ocean interior and factors controlling the biological pump: A synthesis of global sediment trap programs since 1983 , 2008 .

[8]  R. B. Georg,et al.  New sample preparation techniques for the determination of Si isotopic compositions using MC-ICPMS , 2006 .

[9]  M. Frank,et al.  Silicon isotope fractionation during nutrient utilization in the North Pacific , 2006 .

[10]  R. B. Georg,et al.  Re-assessment of silicon isotope reference materials using high-resolution multi-collector ICP-MS , 2006 .

[11]  K. Johnson,et al.  Manganese and iron distributions off central California influenced by upwelling and shelf width , 2005 .

[12]  N. Mahowald,et al.  Global Iron Connections Between Desert Dust, Ocean Biogeochemistry, and Climate , 2005, Science.

[13]  Keith Lindsay,et al.  Upper ocean ecosystem dynamics and iron cycling in a global three‐dimensional model , 2004 .

[14]  A. Mackay,et al.  Cleaning of lake sediment samples for diatom oxygen isotope analysis , 2004 .

[15]  J. P. Dunne,et al.  High-latitude controls of thermocline nutrients and low latitude biological productivity , 2004, Nature.

[16]  S. J. Tanner,et al.  Iron, nutrient and phytoplankton biomass relationships in upwelled waters of the California coastal system , 2003 .

[17]  D. Hutchins,et al.  Spatial and temporal variability in phytoplankton iron limitation along the California coast and consequences for Si, N, and C biogeochemistry , 2003 .

[18]  M. Brzezinski,et al.  A switch from Si(OH)4 to NO3− depletion in the glacial Southern Ocean , 2002 .

[19]  D. M. Nelson,et al.  A review of the Si cycle in the modern ocean: recent progress and missing gaps in the application of biogenic opal as a paleoproductivity proxy , 2000 .

[20]  M. Brzezinski,et al.  A first look at the distribution of the stable isotopes of silicon in natural waters , 2000 .

[21]  D. M. Nelson,et al.  Iron and silicic acid concentrations regulate Si uptake north and south of the Polar Frontal Zone in the Pacific Sector of the Southern Ocean , 2000 .

[22]  K. Hunter,et al.  Determination of the Zn/Si ratio in diatom opal: a method for the separation, cleaning and dissolution of diatoms , 1999 .

[23]  R. Thunell Seasonal and annual variability in particle fluxes in the Gulf of California: A response to climate forcing , 1998 .

[24]  D. Hutchins,et al.  Iron-limited diatom growth and Si:N uptake ratios in a coastal upwelling regime , 1998, Nature.

[25]  Shigenobu Takeda,et al.  Influence of iron availability on nutrient consumption ratio of diatoms in oceanic waters , 1998, Nature.

[26]  F. Wilkerson,et al.  Silicate regulation of new production in the equatorial Pacific upwelling , 1998, Nature.

[27]  Paul G. Falkowski,et al.  Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean , 1997, Nature.

[28]  D. M. Nelson,et al.  Production and dissolution of biogenic silica in the ocean: Revised global estimates, comparison with regional data and relationship to biogenic sedimentation , 1995 .

[29]  F. Wilkerson,et al.  The role of a silicate pump in driving new production , 1995 .

[30]  D. M. Nelson,et al.  The Silica Balance in the World Ocean: A Reestimate , 1995, Science.

[31]  A. J. Watson,et al.  Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean , 1994, Nature.

[32]  E. Maier‐Reimer,et al.  Effect of deep-sea sedimentary calcite preservation on atmospheric CO2 concentration , 1994, Nature.

[33]  ScienceDirect Deep-sea research. Part A, Oceanographic research papers , 1992 .

[34]  L. Brand Minimum iron requirements of marine phytoplankton and the implications for the biogeochemical control of new production , 1991 .

[35]  F. Sirocko Deep-Sea sediments of the Arabian Sea: A paleoclimatic record of the Southwest-Asian summer monsoon , 1991 .

[36]  M. Brzezinski,et al.  THE Si:C:N RATIO OF MARINE DIATOMS: INTERSPECIFIC VARIABILITY AND THE EFFECT OF SOME ENVIRONMENTAL VARIABLES 1 , 1985 .

[37]  J.-F. Minster,et al.  Tracers in the Sea , 1982 .

[38]  D. DeMaster The supply and accumulation of silica in the marine environment , 1981 .

[39]  S. Calvert Accumulation of Diatomaceous Silica in the Sediments of the Gulf of California , 1966 .

[40]  M. Sakata,et al.  High-latitude controls of thermocline nutrients and low latitude biological productivity , 2022 .