Connectivity Spaces

Connectedness is a fundamental property of objects and systems. It is usually viewed as inherently topological, and hence treated as derived property of sets in (generalized) topological spaces. There have been several independent attempts, however, to axiomatize connectedness either directly or in the context of axiom systems describing separation. In this review-like contribution we attempt to link these theories together. We find that despite differences in formalism and language they are largely equivalent. Taken together the available literature provides a coherent mathematical framework that is not only interesting in its own right but may also be of use in several areas of computer science from image analysis to combinatorial optimization.

[1]  Emanuele Trucco,et al.  Computer and Robot Vision , 1995 .

[2]  David E. Zitarelli Connected Sets and the AMS , 1901 – 1921 , 2009 .

[3]  C. Kuratowski,et al.  Sur les ensembles connexes , 2022 .

[4]  P. Hammer,et al.  Extended topology: connected sets and Wallace separations , 1963 .

[5]  Peter F. Stadler,et al.  Saddles and barrier in landscapes of generalized search operators , 2007, FOGA'07.

[6]  Gerhard Preuß,et al.  E-zusammenhängende Räume , 1970 .

[7]  Luís Paquete,et al.  Connectedness and Local Search for Bicriteria Knapsack Problems , 2011, EvoCOP.

[8]  András Frank,et al.  Egerváry Research Group on Combinatorial Optimization on Decomposing a Hypergraph into K Connected Sub-hypergraphs on Decomposing a Hypergraph into K Connected Sub-hypergraphs , 2022 .

[9]  Giuseppe Di Maio,et al.  $D$-proximity spaces , 1991 .

[10]  Michael H. F. Wilkinson An Axiomatic Approach to Hyperconnectivity , 2009, ISMM.

[11]  John Kulesza,et al.  Separation in ?-spaces , 1991 .

[12]  Gerald Jean Francis Banon New Insight on Digital Topology , 2000, ISMM.

[13]  Peter F. Stadler,et al.  Higher separation axioms in generalized closure spaces , 2003 .

[14]  Michel Couprie,et al.  Discrete Topological Transformations for Image Processing , 2012 .

[15]  Peter F. Stadler,et al.  A Topological Approach to Chemical Organizations a Topological Approach to Chemical Organizations , 2022 .

[16]  St'ephane Dugowson Les frontières dialectiques , 2007 .

[17]  José Crespo,et al.  Theoretical aspects of morphological filters by reconstruction , 1995, Signal Process..

[18]  C. Kuratowski Sur l'opération Ā de l'Analysis Situs , 1922 .

[19]  Jean Paul Frédéric Serra Connectivity on Complete Lattices , 2004, Journal of Mathematical Imaging and Vision.

[20]  S. Naimpally,et al.  Proximity Approach to Problems in Topology and Analysis , 2009 .

[21]  Stephan Kopp,et al.  RNA Shape Space Topology , 1999, Artificial Life.

[22]  Marcel Erné,et al.  Connectivity in Lattice‐Ordered Spaces , 1990 .

[23]  St'ephane Dugowson On Connectivity Spaces , 2010, 1001.2378.

[24]  Walter G. Kropatsch,et al.  Digital Topologies Revisited: An Approach Based on the Topological Point-Neighbourhood , 1997, DGCI.

[25]  γ-connected sets , 2003 .

[26]  Christian Ronse Idempotent Block Splitting on Partial Partitions, I: Isotone Operators , 2011, Order.

[27]  Christian Ronse,et al.  Set-Theoretical Algebraic Approaches to Connectivity in Continuous or Digital Spaces , 2004, Journal of Mathematical Imaging and Vision.

[28]  Ulisses Braga-Neto,et al.  Multiscale Connected Operators , 2005, Journal of Mathematical Imaging and Vision.

[29]  William J. Pervin,et al.  Foundations Of General Topology , 1964 .

[30]  Eissa D. Habil,et al.  Connectedness in Isotonic Spaces , 2006 .

[31]  Richard M. Jones,et al.  Connected sets: Bases and metrics , 2005, Mathematical systems theory.

[32]  Peter F. Stadler,et al.  Generalized Topological Spaces in Evolutionary Theory and Combinatorial Chemistry , 2002, J. Chem. Inf. Comput. Sci..

[33]  G. Wagner,et al.  The topology of the possible: formal spaces underlying patterns of evolutionary change. , 2001, Journal of theoretical biology.

[34]  John M. Harris Continuity and separation for pointwise-symmetric isotonic closure functions , 2005 .

[35]  W. J. Thron,et al.  On the lattice of proximities of Čech compatible with a given closure space. , 1973 .

[36]  Ákos Császár Generalized open sets in generalized topologies , 2005 .

[37]  On b-connectedness and b-disconnectedness and their applications , 2013 .

[38]  On some concepts of weak connectedness of topological spaces , 2006 .

[39]  Christian Ronse Idempotent Block Splitting on Partial Partitions, II: Non-isotone Operators , 2011, Order.

[40]  C. Ronse,et al.  Openings: Main Properties, and How to Construct Them , 2007 .

[41]  Stefan Friedrich,et al.  Topology , 2019, Arch. Formal Proofs.

[42]  A. Trouvé Cycle Decompositions and Simulated Annealing , 1996 .

[43]  Michael W. Lodato On topologically induced generalized proximity relations , 1964 .

[44]  Ákos Császár Generalized Open Sets , 1997 .

[45]  Ulisses Braga-Neto,et al.  A Theoretical Tour of Connectivity in Image Processing and Analysis , 2003, Journal of Mathematical Imaging and Vision.

[46]  Michael T. Wolfinger,et al.  Barrier Trees of Degenerate Landscapes , 2002 .

[47]  H. Heijmans Morphological image operators , 1994 .

[48]  Osama A. El-Tantawy,et al.  On I−Proximity Spaces , 2016 .

[49]  E. Steiner The relation between quasi-proximities and topological spaces , 1964 .

[50]  G. Matheron Random Sets and Integral Geometry , 1976 .

[51]  Christian Ronse,et al.  Partial Partitions, Partial Connections and Connective Segmentation , 2008, Journal of Mathematical Imaging and Vision.

[52]  Christian Ronse,et al.  Axiomatics for oriented connectivity , 2014, Pattern Recognit. Lett..

[53]  R. Shen A note on generalized connectedness , 2009 .

[54]  Christian Ronse Ordering Partial Partitions for Image Segmentation and Filtering: Merging, Creating and Inflating Blocks , 2013, Journal of Mathematical Imaging and Vision.

[55]  D. Mattson Separation relations and quasi-proximities , 1967 .

[56]  Anna Di Concilio,et al.  Proximity: a powerful tool in extension theory, function spaces, hyperspaces, boolean algebras and point-free geometry. , 2009 .