Point sets with distinct distances

For positive integersd andn letfd(n) denote the maximum cardinality of a subset of thend-gird {1,2,...,n}d with distinct mutual euclidean distances. Improving earlier results of Erdős and Guy, it will be shown thatf2(n)≥c·n2/3 and, ford≥3, thatfd(n)≥cd·n2/3 ·(lnn)1/3, wherec, cd>0 are constants. Also improvements of lower bounds of Erdős and Alon on the size of Sidon-sets in {12,222,...,n2} are given.Furthermore, it will be proven that any set ofn points in the plane contains a subset with distinct mutual distances of sizec1·n1/4, and for point sets in genral position, i.e. no three points on a line, of sizec2·n1/3 with constantsc1,c2>0. To do so, it will be shown that forn points in ℝ2 with distinct distancesd1,d2,...,dt, wheredi has multiplicitymi, one has ∑i=1tmi2≤c·n3.25 for a positive constantc. If then points are in general position, then we prove ∑i=1tmi2≤c·n3 for a positive constantc and this bound is tight.Moreover, we give an efficient sequential algorithm for finding a subset of a given set with the desired properties, for example with distinct distances, of size as guaranteed by the probabilistic method under a more general setting.

[1]  Micha Sharir,et al.  Repeated Angles in the Plane and Related Problems , 1992, J. Comb. Theory, Ser. A.

[2]  Peter C. Fishburn,et al.  Multiplicities of Interpoint Distances in Finite Planar Sets , 1995, Discret. Appl. Math..

[3]  Paul Erdös,et al.  Bounds for arrays of dots with distinct slopes or lengths , 1992, Comb..

[4]  E. T. Bell Review: G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers , 1939 .

[5]  Paul Erdös,et al.  Distinct distances between lattice points , 1970 .

[6]  Zoltán Füredi,et al.  The maximum number of unit distances in a convex n-gon , 1990, J. Comb. Theory, Ser. A.

[7]  Solomon W. Golomb,et al.  Two-dimensional synchronization patterns for minimum ambiguity , 1982, IEEE Trans. Inf. Theory.

[8]  E. Szemerédi,et al.  Unit distances in the Euclidean plane , 1984 .

[9]  János Komlós,et al.  Extremal Uncrowded Hypergraphs , 1982, J. Comb. Theory, Ser. A.

[10]  E. Wright,et al.  An Introduction to the Theory of Numbers , 1939 .

[11]  E. Landau,et al.  Handbuch der Lehre von der Verteilung der Primzahlen , 1974 .

[12]  R. Vaughan The Hardy-Littlewood Method , 1981 .

[13]  Vojtech Rödl,et al.  On Uncrowded Hypergraphs , 1995, Random Struct. Algorithms.

[14]  Noga Alon,et al.  An Application of Graph Theory to Additive Number Theory , 1985, Eur. J. Comb..

[15]  E. Landau Handbuch der Lehre von der Verteilung der Primzahlen , 1974 .

[16]  Leonidas J. Guibas,et al.  Combinatorial complexity bounds for arrangements of curves and spheres , 1990, Discret. Comput. Geom..

[17]  Noga Alon,et al.  A Fast and Simple Randomized Parallel Algorithm for the Maximal Independent Set Problem , 1985, J. Algorithms.

[18]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[19]  R. Guy Unsolved Problems in Number Theory , 1981 .

[20]  E. T. An Introduction to the Theory of Numbers , 1946, Nature.

[21]  Paul Erdös,et al.  Distinct Distances Determined By Subsets of a Point Set in Space , 1991, Comput. Geom..

[22]  Paul Erdös On some problems of elementary and combinatorial geometry , 1975 .

[23]  B. M. Wilson,et al.  Proofs of Some Formulæ Enunciated by Ramanujan , 1923 .