A posteriori error control of discontinuous Galerkin methods for elliptic obstacle problems

In this article, we derive an a posteriori error estimator for various discontinuous Galerkin (DG) methods that are proposed in (Wang, Han and Cheng, SIAM J. Numer. Anal., 48: 708-733, 2010) for an elliptic obstacle problem. Using a key property of DG methods, we perform the analysis in a general framework. The error estimator we have obtained for DG methods is comparable with the estimator for the conforming Galerkin (CG) finite element method. In the analysis, we construct a non-linear smoothing function mapping DG finite element space to CG finite element space and use it as a key tool. The error estimator consists of a discrete Lagrange multiplier associated with the obstacle constraint. It is shown for non-over-penalized DG methods that the discrete Lagrange multiplier is uniformly stable on non-uniform meshes. Finally, numerical results demonstrating the performance of the error estimator are presented.

[1]  F. Brezzi,et al.  Discontinuous Galerkin approximations for elliptic problems , 2000 .

[2]  D. Kinderlehrer,et al.  An introduction to variational inequalities and their applications , 1980 .

[3]  Susanne C. Brenner,et al.  Two-level additive Schwarz preconditioners for nonconforming finite element methods , 1996, Math. Comput..

[4]  J. Douglas,et al.  Interior Penalty Procedures for Elliptic and Parabolic Galerkin Methods , 1976 .

[5]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[6]  Dietrich Braess,et al.  A posteriori error estimators for obstacle problems – another look , 2005, Numerische Mathematik.

[7]  R. Glowinski,et al.  Numerical Methods for Nonlinear Variational Problems , 1985 .

[8]  Ricardo H. Nochetto,et al.  Residual type a posteriori error estimates for elliptic obstacle problems , 2000, Numerische Mathematik.

[9]  Ilaria Perugia,et al.  An A Priori Error Analysis of the Local Discontinuous Galerkin Method for Elliptic Problems , 2000, SIAM J. Numer. Anal..

[10]  Chi-Wang Shu,et al.  The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems , 1998 .

[11]  Lie-heng Wang,et al.  On the quadratic finite element approximation to the obstacle problem , 2002, Numerische Mathematik.

[12]  Carsten Carstensen,et al.  Convergence analysis of a conforming adaptive finite element method for an obstacle problem , 2007, Numerische Mathematik.

[13]  Thirupathi Gudi,et al.  A new error analysis for discontinuous finite element methods for linear elliptic problems , 2010, Math. Comput..

[14]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[15]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[16]  K. Atkinson,et al.  Theoretical Numerical Analysis: A Functional Analysis Framework , 2001 .

[17]  Thirupathi Gudi,et al.  hp-Discontinuous Galerkin methods for strongly nonlinear elliptic boundary value problems , 2008, Numerische Mathematik.

[18]  Ricardo H. Nochetto,et al.  A posteriori error analysis for a class of integral equations and variational inequalities , 2010, Numerische Mathematik.

[19]  William W. Hager,et al.  Error estimates for the finite element solution of variational inequalities , 1978 .

[20]  Andreas Veeser,et al.  Efficient and Reliable A Posteriori Error Estimators for Elliptic Obstacle Problems , 2001, SIAM J. Numer. Anal..

[21]  W. Dörfler A convergent adaptive algorithm for Poisson's equation , 1996 .

[22]  Ohannes A. Karakashian,et al.  A Posteriori Error Estimates for a Discontinuous Galerkin Approximation of Second-Order Elliptic Problems , 2003, SIAM J. Numer. Anal..

[23]  D. Arnold An Interior Penalty Finite Element Method with Discontinuous Elements , 1982 .

[24]  Mary F. Wheeler,et al.  A Priori Error Estimates for Finite Element Methods Based on Discontinuous Approximation Spaces for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[25]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis: Oden/A Posteriori , 2000 .

[26]  Kazufumi Ito,et al.  The Primal-Dual Active Set Strategy as a Semismooth Newton Method , 2002, SIAM J. Optim..

[27]  Susanne C. Brenner,et al.  Poincaré-Friedrichs Inequalities for Piecewise H1 Functions , 2003, SIAM J. Numer. Anal..

[28]  M. Wheeler An Elliptic Collocation-Finite Element Method with Interior Penalties , 1978 .

[29]  William W. Hager,et al.  Error estimates for the finite element solution of variational inequalities , 1977 .

[30]  Susanne C. Brenner,et al.  Two-Level Additive Schwarz Preconditioners for a Weakly Over-Penalized Symmetric Interior Penalty Method , 2011, J. Sci. Comput..

[31]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[32]  R. S. Falk Error estimates for the approximation of a class of variational inequalities , 1974 .

[33]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[34]  I. Babuska,et al.  Nonconforming Elements in the Finite Element Method with Penalty , 1973 .

[35]  K. Atkinson,et al.  Theoretical Numerical Analysis: A Functional Analysis Framework , 2001 .

[36]  Fei Wang,et al.  Discontinuous Galerkin Methods for Solving Elliptic Variational Inequalities , 2010, SIAM J. Numer. Anal..

[37]  Susanne C. Brenner,et al.  Convergence of nonconforming multigrid methods without full elliptic regularity , 1999, Math. Comput..

[38]  Carsten Carstensen,et al.  Averaging techniques yield reliable a posteriori finite element error control for obstacle problems , 2004, Numerische Mathematik.