Factorization of tree QCD amplitudes in the high-energy limit and in the collinear limit

Abstract In the high-energy limit, we compute the gauge-invariant three-parton forward clusters, which in the BFKL theory constitute the tree parts of the NNLO impact factors. In the triple collinear limit, we obtain the polarized double-splitting functions. For the unpolarized and the spin-correlated double-splitting functions, our results agree with the ones obtained by Campbell–Glover and Catani–Grazzini, respectively. In addition, we compute the four-gluon forward cluster, which in the BFKL theory forms the tree part of the NNNLO gluonic impact factor. In the quadruple collinear limit we obtain the unpolarized triple-splitting functions, while in the limit of a three-parton central cluster we derive the Lipatov vertex for the production of three gluons, relevant for the calculation of a BFKL ladder at NNLL accuracy. Finally, motivated by the reorganization of the color in the high-energy limit, we introduce a color decomposition of the purely gluonic tree amplitudes in terms of the linearly independent subamplitudes only.

[1]  M. Ciafaloni,et al.  k-Factorization and impact factors at next-to-leading level☆ , 1999 .

[2]  E. Laenen,et al.  Next-to-leading order cross sections for tagged reactions , 1998, hep-ph/9812415.

[3]  D. Zeppenfeld DIAGONALIZATION OF COLOR FACTORS , 1988 .

[4]  M. Seymour,et al.  Erratum to A general algorithm for calculating jet cross sections in NLO QCD [Nucl. Phys. B 485 (1 , 1998 .

[5]  Z. Bern,et al.  Factorization in one loop gauge theory , 1995, hep-ph/9503236.

[6]  DOUBLE UNRESOLVED APPROXIMATIONS TO MULTIPARTON SCATTERING AMPLITUDES , 1997, hep-ph/9710255.

[7]  S. Frixione A general approach to jet cross sections in QCD , 1997, hep-ph/9706545.

[8]  W. Giele,et al.  Multiple soft gluon radiation in parton processes , 1989 .

[9]  L. Lipatov,et al.  Next-to-leading corrections to the BFKL equation from gluon and quark production , 1996 .

[10]  Collinear factorization and splitting functions for next-to-next-to-leading order QCD calculations , 1998, hep-ph/9810389.

[11]  W. Giele,et al.  Recursive calculations for processes with n gluons , 1988 .

[12]  V. Fadin,et al.  Gluon Reggeization in QCD in the next to leading order , 1995 .

[13]  Z. Bern,et al.  The Computation of loop amplitudes in gauge theories , 1992 .

[14]  G. Parisi,et al.  Asymptotic Freedom in Parton Language , 1977 .

[15]  M. Ciafaloni,et al.  Energy scale(s) and next-to-leading BFKL equation 1 Work supported in part by EU Network contract FM , 1998, hep-ph/9803389.

[16]  D. Soper,et al.  Calculation of jet cross sections in hadron collisions at order alpha s3. , 1992, Physical review. D, Particles and fields.

[17]  W. Siegel Supersymmetric Dimensional Regularization via Dimensional Reduction , 1979 .

[18]  M. Mangano,et al.  Duality and Multi - Gluon Scattering , 1988 .

[19]  Michael H. Seymour,et al.  A general algorithm for calculating jet cross sections in NLO QCD , 1996 .

[20]  L. Lipatov,et al.  Radiative corrections to QCD scattering amplitudes in a multi - Regge kinematics , 1993 .

[21]  L. Dixon,et al.  One-loop n-point gauge theory amplitudes, unitarity and collinear limits , 1994, hep-ph/9403226.

[22]  G. Marchesini,et al.  Jet Structure and Infrared Sensitive Quantities in Perturbative QCD , 1983 .

[23]  P. G. Lauwers,et al.  Gauge Invariance Structure of Quantum Chromodynamics , 1981 .

[24]  W. Giele,et al.  The Six Gluon Process as an Example of Weyl-Van Der Waerden Spinor Calculus , 1987 .

[25]  W. Giele,et al.  Exact and approximate expressions for multigluon scattering , 1990 .

[26]  V. Duca Quark-antiquark contribution to the multigluon amplitudes in the helicity formalism. , 1996, hep-ph/9604250.

[27]  P. Nieuwenhuizen,et al.  Regularization by dimensional reduction of supersymmetric and non-supersymmetric gauge theories , 1980 .

[28]  Calculation of QCD jet cross sections at next-to-leading order , 1996, hep-ph/9610498.

[29]  M. Seymour,et al.  The dipole formalism for the calculation of QCD jet cross sections at next-to-leading order , 1996, hep-ph/9602277.

[30]  D. Yennie,et al.  The infrared divergence phenomena and high-energy processes , 1961 .

[31]  Glover,et al.  Higher-order corrections to jet cross sections in e+e- annihilation. , 1992, Physical review. D, Particles and fields.

[32]  D. Kosower All order collinear behavior in gauge theories , 1999, hep-ph/9901201.

[33]  C. Maxwell,et al.  Untangling large-pT hadronic reactions , 1984 .

[34]  C. Hong-mo,et al.  GENERALIZED VENEZIANO MODEL WITH ISOSPIN. , 1969 .

[35]  Stirling,et al.  Multijet cross sections in hadronic collisions. , 1988, Physical review. D, Particles and fields.

[36]  C. Maxwell Approximating n-jet production , 1987 .

[37]  M. Mangano,et al.  Multi-Parton Amplitudes in Gauge Theories , 1991, hep-th/0509223.

[38]  S. Catani The singular behaviour of QCD amplitudes at two-loop order , 1998, hep-ph/9802439.

[39]  Higher-order corrections to jet cross sections in hadron colliders , 1993, hep-ph/9302225.

[40]  Z. Bern,et al.  Color decomposition of one-loop amplitudes in gauge theories , 1991 .

[41]  M. Mangano The color structure of gluon emission , 1988 .

[42]  J. Blümlein,et al.  Gluon Regge trajectory inO(αs2) , 1998 .

[43]  V. Nair,et al.  MULTI GLUON SCATTERING: A STRING BASED CALCULATION , 1988 .

[44]  L. Lipatov High-energy scattering in QCD and in quantum gravity and two-dimensional field theories , 1991 .

[45]  V. Duca Parke-Taylor amplitudes in multi-Regge kinematics. , 1993, hep-ph/9304259.

[46]  L. Lipatov Gauge invariant effective action for high energy processes in QCD , 1995 .

[47]  R. Kleiss,et al.  Multigluon cross sections and 5-jet production at hadron colliders , 1989 .

[48]  Z. Kunszt,et al.  Three-jet cross sections to next-to-leading order , 1995, hep-ph/9512328.

[49]  L. Lipatov,et al.  BFKL pomeron in the next-to-leading approximation , 1998, hep-ph/9802290.