Recursive bias estimation for multivariate regression smoothers
暂无分享,去创建一个
[1] Nicolas W. Hengartner,et al. Bandwidth selection for local linear regression smoothers , 2002 .
[2] Yuhong Yang. Combining Different Procedures for Adaptive Regression , 2000, Journal of Multivariate Analysis.
[3] Belkacem Abdous,et al. Computationally efficient classes of higher-order kernel functions† , 1995 .
[4] Nicolas W. Hengartner,et al. Iterative bias reduction: a comparative study , 2013, Stat. Comput..
[5] Adam Krzyzak,et al. A Distribution-Free Theory of Nonparametric Regression , 2002, Springer series in statistics.
[6] G. Schwarz. Estimating the Dimension of a Model , 1978 .
[7] J. Friedman,et al. Estimating Optimal Transformations for Multiple Regression and Correlation. , 1985 .
[8] L. Breiman. USING ADAPTIVE BAGGING TO DEBIAS REGRESSIONS , 1999 .
[9] J. Friedman. Special Invited Paper-Additive logistic regression: A statistical view of boosting , 2000 .
[10] Florencio I. Utreras,et al. Convergence rates for multivariate smoothing spline functions , 1988 .
[11] H. Akaike,et al. Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .
[12] J. Friedman,et al. Projection Pursuit Regression , 1981 .
[13] Jerome H. Friedman. Multivariate adaptive regression splines (with discussion) , 1991 .
[14] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[15] R. Eubank. Nonparametric Regression and Spline Smoothing , 1999 .
[16] N. Hengartner,et al. Recursive bias estimation and L2 boosting , 2008, 0801.4629.
[17] Ker-Chau Li,et al. Asymptotic Optimality for $C_p, C_L$, Cross-Validation and Generalized Cross-Validation: Discrete Index Set , 1987 .
[18] S. Wood. Thin plate regression splines , 2003 .
[19] Peter Hall,et al. Data sharpening methods for bias reduction in nonparametric regression , 2000 .
[20] Chong Gu. Smoothing Spline Anova Models , 2002 .
[21] D. Rubinfeld,et al. Hedonic housing prices and the demand for clean air , 1978 .
[22] G. Wahba. Smoothing noisy data with spline functions , 1975 .
[23] B. Silverman,et al. Spline Smoothing: The Equivalent Variable Kernel Method , 1984 .
[24] R. Tibshirani,et al. Generalized Additive Models , 1991 .
[25] O. Linton,et al. A kernel method of estimating structured nonparametric regression based on marginal integration , 1995 .
[26] O. Lepskii. Asymptotically Minimax Adaptive Estimation. I: Upper Bounds. Optimally Adaptive Estimates , 1992 .
[27] Robert Serfling,et al. Convergence Rates for $U$-Statistics and Related Statistics , 1973 .
[28] Nicolas W. Hengartner,et al. Rate optimal estimation with the integration method in the presence of many covariates , 2005 .
[29] J. Friedman. Multivariate adaptive regression splines , 1990 .
[30] Werner Stuetzle,et al. Some comments on the asymptotic behavior of robust smoothers , 1979 .
[31] Clifford M. Hurvich,et al. Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion , 1998 .
[32] Karen Messer,et al. A Comparison of a Spline Estimate to its Equivalent Kernel Estimate , 1991 .
[33] Charles C. Taylor,et al. On boosting kernel regression , 2008 .
[34] Masayuki Hirukawa,et al. Nonparametric multiplicative bias correction for kernel-type density estimation on the unit interval , 2010, Comput. Stat. Data Anal..
[35] Alexandre B. Tsybakov,et al. Introduction to Nonparametric Estimation , 2008, Springer series in statistics.
[36] Peter Hall,et al. On bias reduction in local linear smoothing , 1998 .
[37] J. Simonoff. Smoothing Methods in Statistics , 1998 .
[38] J. Friedman. Greedy function approximation: A gradient boosting machine. , 2001 .
[39] R. Tibshirani,et al. Linear Smoothers and Additive Models , 1989 .
[40] P. Bühlmann,et al. Boosting With the L2 Loss , 2003 .