Recursive bias estimation for multivariate regression smoothers

This paper presents a practical and simple fully nonparametric multivariate smoothing procedure that adapts to the underlying smoothness of the true regression function. Our estimator is easily computed by successive application of existing base smoothers (without the need of selecting an optimal smoothing parameter), such as thin-plate spline or kernel smoothers. The resulting smoother has better out of sample predictive capabilities than the underlying base smoother, or competing structurally constrained models (GAM) for small dimension (3 10) and to our knowledge, no other adaptive fully nonparametric regression estimator is available without constrained assumption such as additivity for example. On a real example, the Boston Housing Data, our method reduces the out of sample prediction error by 20 %. An R package ibr, available at CRAN, implements the proposed multivariate nonparametric method in R.

[1]  Nicolas W. Hengartner,et al.  Bandwidth selection for local linear regression smoothers , 2002 .

[2]  Yuhong Yang Combining Different Procedures for Adaptive Regression , 2000, Journal of Multivariate Analysis.

[3]  Belkacem Abdous,et al.  Computationally efficient classes of higher-order kernel functions† , 1995 .

[4]  Nicolas W. Hengartner,et al.  Iterative bias reduction: a comparative study , 2013, Stat. Comput..

[5]  Adam Krzyzak,et al.  A Distribution-Free Theory of Nonparametric Regression , 2002, Springer series in statistics.

[6]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[7]  J. Friedman,et al.  Estimating Optimal Transformations for Multiple Regression and Correlation. , 1985 .

[8]  L. Breiman USING ADAPTIVE BAGGING TO DEBIAS REGRESSIONS , 1999 .

[9]  J. Friedman Special Invited Paper-Additive logistic regression: A statistical view of boosting , 2000 .

[10]  Florencio I. Utreras,et al.  Convergence rates for multivariate smoothing spline functions , 1988 .

[11]  H. Akaike,et al.  Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .

[12]  J. Friedman,et al.  Projection Pursuit Regression , 1981 .

[13]  Jerome H. Friedman Multivariate adaptive regression splines (with discussion) , 1991 .

[14]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[15]  R. Eubank Nonparametric Regression and Spline Smoothing , 1999 .

[16]  N. Hengartner,et al.  Recursive bias estimation and L2 boosting , 2008, 0801.4629.

[17]  Ker-Chau Li,et al.  Asymptotic Optimality for $C_p, C_L$, Cross-Validation and Generalized Cross-Validation: Discrete Index Set , 1987 .

[18]  S. Wood Thin plate regression splines , 2003 .

[19]  Peter Hall,et al.  Data sharpening methods for bias reduction in nonparametric regression , 2000 .

[20]  Chong Gu Smoothing Spline Anova Models , 2002 .

[21]  D. Rubinfeld,et al.  Hedonic housing prices and the demand for clean air , 1978 .

[22]  G. Wahba Smoothing noisy data with spline functions , 1975 .

[23]  B. Silverman,et al.  Spline Smoothing: The Equivalent Variable Kernel Method , 1984 .

[24]  R. Tibshirani,et al.  Generalized Additive Models , 1991 .

[25]  O. Linton,et al.  A kernel method of estimating structured nonparametric regression based on marginal integration , 1995 .

[26]  O. Lepskii Asymptotically Minimax Adaptive Estimation. I: Upper Bounds. Optimally Adaptive Estimates , 1992 .

[27]  Robert Serfling,et al.  Convergence Rates for $U$-Statistics and Related Statistics , 1973 .

[28]  Nicolas W. Hengartner,et al.  Rate optimal estimation with the integration method in the presence of many covariates , 2005 .

[29]  J. Friedman Multivariate adaptive regression splines , 1990 .

[30]  Werner Stuetzle,et al.  Some comments on the asymptotic behavior of robust smoothers , 1979 .

[31]  Clifford M. Hurvich,et al.  Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion , 1998 .

[32]  Karen Messer,et al.  A Comparison of a Spline Estimate to its Equivalent Kernel Estimate , 1991 .

[33]  Charles C. Taylor,et al.  On boosting kernel regression , 2008 .

[34]  Masayuki Hirukawa,et al.  Nonparametric multiplicative bias correction for kernel-type density estimation on the unit interval , 2010, Comput. Stat. Data Anal..

[35]  Alexandre B. Tsybakov,et al.  Introduction to Nonparametric Estimation , 2008, Springer series in statistics.

[36]  Peter Hall,et al.  On bias reduction in local linear smoothing , 1998 .

[37]  J. Simonoff Smoothing Methods in Statistics , 1998 .

[38]  J. Friedman Greedy function approximation: A gradient boosting machine. , 2001 .

[39]  R. Tibshirani,et al.  Linear Smoothers and Additive Models , 1989 .

[40]  P. Bühlmann,et al.  Boosting With the L2 Loss , 2003 .