Order Invariance on Decomposable Structures
暂无分享,去创建一个
Michael Elberfeld | Martin Grohe | Marlin Frickenschmidt | Martin Grohe | Michael Elberfeld | Marlin Frickenschmidt
[1] Bruno Courcelle,et al. The monadic second-order logic of graphs XIV: uniformly sparse graphs and edge set quantifications , 2003, Theor. Comput. Sci..
[2] Bruno Courcelle,et al. The Monadic Second-Order Logic of Graphs V: On Closing the Gap Between Definability and Recognizability , 1991, Theor. Comput. Sci..
[3] S. Feferman,et al. The first order properties of products of algebraic systems , 1959 .
[4] Leonid Libkin,et al. Elements of Finite Model Theory , 2004, Texts in Theoretical Computer Science.
[5] Bruno Courcelle,et al. The Monadic Second-Order Logic of Graphs XI: Hierarchical Decompositions of Connected Graphs , 1999, Theor. Comput. Sci..
[6] G. Ringel. Das Geschlecht des vollständigen paaren Graphen , 1965 .
[7] Frederik Harwath,et al. Expressivity and Succinctness of Order-Invariant Logics on Depth-Bounded Structures , 2014, MFCS.
[8] Bruno Courcelle,et al. The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite Graphs , 1990, Inf. Comput..
[9] Robert E. Tarjan,et al. Decomposition by clique separators , 1985, Discret. Math..
[10] Michal Pilipczuk,et al. Definability equals recognizability for graphs of bounded treewidth * , 2016, 2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).
[11] Michal Pilipczuk,et al. Fixed-Parameter Tractable Canonization and Isomorphism Test for Graphs of Bounded Treewidth , 2014, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.
[12] Leonid Libkin,et al. Elements Of Finite Model Theory (Texts in Theoretical Computer Science. An Eatcs Series) , 2004 .
[13] Bruno Courcelle,et al. The Monadic Second-Order Logic of Graphs X: Linear Orderings , 1996, Theor. Comput. Sci..
[14] Wolfgang Thomas,et al. Languages, Automata, and Logic , 1997, Handbook of Formal Languages.
[15] G. Ringel. Der vollständige paare Graph auf nichtorientierbaren Flächen. , 1965 .
[16] Martin Otto,et al. Back and forth between guarded and modal logics , 2002, TOCL.
[17] R. Ansorge. Abhandlungen aus dem mathematischen seminar der Universität Hamburg , 1977 .
[18] Bruno Courcelle,et al. The Monadic Second-Order Logic of Graphs VIII: Orientations , 1995, Ann. Pure Appl. Log..
[19] Denis Lapoire,et al. Recognizability Equals Monadic Second-Order Definability for Sets of Graphs of Bounded Tree-Width , 1998, STACS.
[20] Bruno Courcelle,et al. Monadic second-order definable graph orderings , 2013, Log. Methods Comput. Sci..
[21] R. Halin,et al. Über simpliziale Zerfällungen beliebiger (endlicher oder unendlicher) Graphen , 1964 .
[22] Ludwig Staiger,et al. Ω-languages , 1997 .
[23] Yuri Gurevich,et al. Toward logic tailored for computational complexity , 1984 .
[24] Journal für die reine und angewandte Mathematik , 1893 .
[25] Bruno Courcelle,et al. Graph Structure and Monadic Second-Order Logic - A Language-Theoretic Approach , 2012, Encyclopedia of mathematics and its applications.
[26] Nicole Schweikardt. A Short Tutorial on Order-Invariant First-Order Logic , 2013, CSR.
[27] Tobias Ganzow,et al. Order-Invariant MSO is Stronger than Counting MSO in the Finite , 2007, STACS.
[28] Michael Benedikt,et al. Towards a characterization of order-invariant queries over tame graphs , 2009, The Journal of Symbolic Logic.
[29] Michael Elberfeld,et al. Canonizing Graphs of Bounded Tree Width in Logspace , 2017, TOCT.
[30] Johann A. Makowsky,et al. Algorithmic uses of the Feferman-Vaught Theorem , 2004, Ann. Pure Appl. Log..
[31] Y. Gurevich. On Finite Model Theory , 1990 .