Order Invariance on Decomposable Structures

Order-invariant formulas access an ordering on a structure’s universe, but the model relation is independent of the used ordering. They are frequently used for logic-based approaches in computer science. Order-invariant formulas capture unordered problems of complexity classes and they model the independence of the answer to a database query from low-level aspects of databases. we study the expressive power of order-invariant monadic second-order (MSO) and first-order (FO) logic on restricted classes of structures that admit certain forms of tree decompositions (not necessarily of bounded width).While order-invariant MSO is more expressive than MSO and, even, CMSO (MSO with modulo-counting predicates) in general, we show that order-invariant MSO and CMSO are equally expressive on graphs of bounded tree width and on planar graphs. This extends an earlier result for trees due to Courcelle. Moreover, we show that all properties definable in order-invariant FO are also definable in MSO on these classes. These results are applications of a theorem that shows how to lift up definability results for order-invariant logics from the bags of a graph’s tree decomposition to the graph itself.

[1]  Bruno Courcelle,et al.  The monadic second-order logic of graphs XIV: uniformly sparse graphs and edge set quantifications , 2003, Theor. Comput. Sci..

[2]  Bruno Courcelle,et al.  The Monadic Second-Order Logic of Graphs V: On Closing the Gap Between Definability and Recognizability , 1991, Theor. Comput. Sci..

[3]  S. Feferman,et al.  The first order properties of products of algebraic systems , 1959 .

[4]  Leonid Libkin,et al.  Elements of Finite Model Theory , 2004, Texts in Theoretical Computer Science.

[5]  Bruno Courcelle,et al.  The Monadic Second-Order Logic of Graphs XI: Hierarchical Decompositions of Connected Graphs , 1999, Theor. Comput. Sci..

[6]  G. Ringel Das Geschlecht des vollständigen paaren Graphen , 1965 .

[7]  Frederik Harwath,et al.  Expressivity and Succinctness of Order-Invariant Logics on Depth-Bounded Structures , 2014, MFCS.

[8]  Bruno Courcelle,et al.  The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite Graphs , 1990, Inf. Comput..

[9]  Robert E. Tarjan,et al.  Decomposition by clique separators , 1985, Discret. Math..

[10]  Michal Pilipczuk,et al.  Definability equals recognizability for graphs of bounded treewidth * , 2016, 2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).

[11]  Michal Pilipczuk,et al.  Fixed-Parameter Tractable Canonization and Isomorphism Test for Graphs of Bounded Treewidth , 2014, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.

[12]  Leonid Libkin,et al.  Elements Of Finite Model Theory (Texts in Theoretical Computer Science. An Eatcs Series) , 2004 .

[13]  Bruno Courcelle,et al.  The Monadic Second-Order Logic of Graphs X: Linear Orderings , 1996, Theor. Comput. Sci..

[14]  Wolfgang Thomas,et al.  Languages, Automata, and Logic , 1997, Handbook of Formal Languages.

[15]  G. Ringel Der vollständige paare Graph auf nichtorientierbaren Flächen. , 1965 .

[16]  Martin Otto,et al.  Back and forth between guarded and modal logics , 2002, TOCL.

[17]  R. Ansorge Abhandlungen aus dem mathematischen seminar der Universität Hamburg , 1977 .

[18]  Bruno Courcelle,et al.  The Monadic Second-Order Logic of Graphs VIII: Orientations , 1995, Ann. Pure Appl. Log..

[19]  Denis Lapoire,et al.  Recognizability Equals Monadic Second-Order Definability for Sets of Graphs of Bounded Tree-Width , 1998, STACS.

[20]  Bruno Courcelle,et al.  Monadic second-order definable graph orderings , 2013, Log. Methods Comput. Sci..

[21]  R. Halin,et al.  Über simpliziale Zerfällungen beliebiger (endlicher oder unendlicher) Graphen , 1964 .

[22]  Ludwig Staiger,et al.  Ω-languages , 1997 .

[23]  Yuri Gurevich,et al.  Toward logic tailored for computational complexity , 1984 .

[24]  Journal für die reine und angewandte Mathematik , 1893 .

[25]  Bruno Courcelle,et al.  Graph Structure and Monadic Second-Order Logic - A Language-Theoretic Approach , 2012, Encyclopedia of mathematics and its applications.

[26]  Nicole Schweikardt A Short Tutorial on Order-Invariant First-Order Logic , 2013, CSR.

[27]  Tobias Ganzow,et al.  Order-Invariant MSO is Stronger than Counting MSO in the Finite , 2007, STACS.

[28]  Michael Benedikt,et al.  Towards a characterization of order-invariant queries over tame graphs , 2009, The Journal of Symbolic Logic.

[29]  Michael Elberfeld,et al.  Canonizing Graphs of Bounded Tree Width in Logspace , 2017, TOCT.

[30]  Johann A. Makowsky,et al.  Algorithmic uses of the Feferman-Vaught Theorem , 2004, Ann. Pure Appl. Log..

[31]  Y. Gurevich On Finite Model Theory , 1990 .