Synchronization of coupled harmonic oscillators in a dynamic proximity network

In this paper, we revisit the synchronization problems for coupled harmonic oscillators in a dynamic proximity network. Unlike many existing algorithms for distributed control of complex dynamical networks that require explicit assumptions on the network connectivity, we show that the coupled harmonic oscillators can always be synchronized, without imposing any network connectivity assumption. Moreover, we also investigate the synchronization with a leader and show that all harmonic oscillators can asymptotically attain the position and velocity of the leader, again without any assumption on connectivity of the followers. Numerical simulation illustrates the theoretical results.

[1]  Xiao Fan Wang,et al.  Complex Networks: Topology, Dynamics and Synchronization , 2002, Int. J. Bifurc. Chaos.

[2]  George J. Pappas,et al.  Stable flocking of mobile agents part I: dynamic topology , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[3]  Xiao Fan Wang,et al.  Flocking of Multi-Agents With a Virtual Leader , 2009, IEEE Trans. Autom. Control..

[4]  A. Jadbabaie,et al.  On the stability of the Kuramoto model of coupled nonlinear oscillators , 2005, Proceedings of the 2004 American Control Conference.

[5]  Craig W. Reynolds Flocks, herds, and schools: a distributed behavioral model , 1987, SIGGRAPH.

[6]  Guangming Xie,et al.  Consensus control for a class of networks of dynamic agents , 2007 .

[7]  Ella M. Atkins,et al.  Distributed multi‐vehicle coordinated control via local information exchange , 2007 .

[8]  Reza Olfati-Saber,et al.  Flocking for multi-agent dynamic systems: algorithms and theory , 2006, IEEE Transactions on Automatic Control.

[9]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[10]  Xiao Fan Wang,et al.  Synchronization in scale-free dynamical networks: robustness and fragility , 2001, cond-mat/0105014.

[11]  Yoshiki Kuramoto,et al.  Chemical Oscillations, Waves, and Turbulence , 1984, Springer Series in Synergetics.

[12]  A. Jadbabaie,et al.  Synchronization in Oscillator Networks: Switching Topologies and Non-homogeneous Delays , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[13]  H. Fujisaka,et al.  Stability Theory of Synchronized Motion in Coupled-Oscillator Systems , 1983 .

[14]  Gordon F. Royle,et al.  Algebraic Graph Theory , 2001, Graduate texts in mathematics.

[15]  Chai Wah Wu,et al.  Synchronization in Coupled Chaotic Circuits and Systems , 2002 .

[16]  Wei Ren On Consensus Algorithms for Double-Integrator Dynamics , 2008, IEEE Trans. Autom. Control..

[17]  George J. Pappas,et al.  Stable flocking of mobile agents, part I: fixed topology , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[18]  Guanrong Chen,et al.  Complex networks: small-world, scale-free and beyond , 2003 .

[19]  Wei Ren,et al.  Synchronization of coupled harmonic oscillators with local interaction , 2008, Autom..