Novel regenerable solid sorbents based on lithium orthosilicate for carbon dioxide capture at high temperatures

[1]  M. Maroto-Valer,et al.  Optimization of Li4SiO4 synthesis conditions by a solid state method for maximum CO2 capture at high temperature , 2018 .

[2]  R. Mazumder,et al.  Synthesis, CO2 absorption property and densification of Li4SiO4 powder by glycine-nitrate solution combustion method and its comparison with solid state method , 2017 .

[3]  P. Zhao,et al.  Molten K2CO3-promoted high-performance Li4SiO4 sorbents at low CO2 concentrations , 2017 .

[4]  D. Brilman,et al.  CO2 removal from biogas with supported amine sorbents: First technical evaluation based on experimental data , 2017 .

[5]  P. Zhao,et al.  Development of metallic element-stabilized Li4SiO4 sorbents for cyclic CO2 capture , 2017 .

[6]  Hyun-chul Lee,et al.  Effect of pH-controlled synthesis on the physical properties and intermediate-temperature CO2 sorption behaviors of K–Mg double salt-based sorbents , 2016 .

[7]  K. Lee,et al.  Citrate Sol-Gel Method for the Preparation of Sodium Zirconate for High-Temperature CO2 Sorption , 2016 .

[8]  I. Romero-Ibarra,et al.  Li2SiO3 fast microwave-assisted hydrothermal synthesis and evaluation of its water vapor and CO2 absorption properties , 2016 .

[9]  Monica Puccini,et al.  Alkali promoted lithium orthosilicate for CO2 capture at high temperature and low concentration , 2013 .

[10]  Bingyun Li,et al.  CO2 capture properties of lithium silicates with different ratios of Li2O/SiO2: an ab initio thermodynamic and experimental approach. , 2013, Physical chemistry chemical physics : PCCP.

[11]  Monica Puccini,et al.  CO2 Capture at High Temperature and Low Concentration on Li4sio4 Based Sorbents , 2013 .

[12]  Yuhua Duan,et al.  Structural and electronic properties of Li8ZrO6 and its CO2 capture capabilities: an ab initio thermodynamic approach. , 2013, Physical chemistry chemical physics : PCCP.

[13]  Soo Chool Lee,et al.  Improving regeneration properties of potassium-based alumina sorbents for carbon dioxide capture from flue gas , 2013 .

[14]  Ahmad Monshi,et al.  Modified Scherrer Equation to Estimate More Accurately Nano-Crystallite Size Using XRD , 2012 .

[15]  M. Iliuta,et al.  Application of surfactant-template technique for preparation of sodium zirconate as high temperature CO2 sorbent , 2012 .

[16]  Borja Arias,et al.  Post-combustion calcium looping process with a highly stable sorbent activity by recarbonation , 2012 .

[17]  Chao-Hsi Chen,et al.  Calcium oxide as high temperature CO2 sorbent: Effect of textural properties , 2012 .

[18]  Chao-Hsi Chen,et al.  Efficient carbon dioxide capture over a nitrogen-rich carbon having a hierarchical micro-mesopore structure , 2012 .

[19]  Monica Puccini,et al.  High-temperature and low concentration CO2 sorption on Li4SiO4 based sorbents: Study of the used silica and doping method effects , 2011 .

[20]  M. Olivares-Marín,et al.  Use of small-amplitude oscillatory shear rheometry to study the flow properties of pure and potassium-doped Li2ZrO3 sorbents during the sorption of CO2 at high temperatures , 2010 .

[21]  Trevor C. Drage,et al.  Novel lithium-based sorbents from fly ashes for CO2 capture at high temperatures , 2010 .

[22]  Christopher W. Jones,et al.  Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. , 2009, ChemSusChem.

[23]  Heriberto Pfeiffer,et al.  TEXTURAL, STRUCTURAL, AND CO2 CHEMISORPTION EFFECTS PRODUCED ON THE LITHIUM ORTHOSILICATE BY ITS DOPING WITH SODIUM (LI4?XNAXSIO4) , 2008 .

[24]  Covadonga Pevida,et al.  Silica-templated melamine–formaldehyde resin derived adsorbents for CO2 capture , 2008 .

[25]  Soo Chool Lee,et al.  Development of regenerable MgO-based sorbent promoted with K2CO3 for CO2 capture at low temperatures. , 2008, Environmental science & technology.

[26]  Sung-Ho Jo,et al.  Continuous operation of the potassium-based dry sorbent CO2 capture process with two fluidized-bed reactors , 2007 .

[27]  C. Gauer,et al.  Doped lithium orthosilicate for absorption of carbon dioxide , 2006 .

[28]  N. Shigemoto,et al.  Material balance and energy consumption for CO2 recovery from moist flue gas employing K2CO3-on-activated carbon and its evaluation for practical adaptation , 2006 .

[29]  Chong Kul Ryu,et al.  CO2 absorption and regeneration of alkali metal-based solid sorbents , 2006 .

[30]  Colin E. Snape,et al.  CO2 capture using some fly ash-derived carbon materials , 2005 .

[31]  Yukishige Maezawa,et al.  Novel CO2 Absorbents Using Lithium‐Containing Oxide , 2005 .

[32]  Y. S. Lin,et al.  Kinetics of carbon dioxide sorption on potassium-doped lithium zirconate , 2003 .

[33]  L. Fan,et al.  Carbonation−Calcination Cycle Using High Reactivity Calcium Oxide for Carbon Dioxide Separation from Flue Gas , 2002 .

[34]  Masahiro Kato,et al.  Carbon dioxide absorption by lithium orthosilicate in a wide range of temperature and carbon dioxide concentrations , 2002 .

[35]  T. Hashimoto,et al.  Evaluation of reaction kinetics of CO2 and Li4SiO4 by thermogravimetry under various CO2 partial pressures , 2018 .