A Temporally Adaptive Material Point Method with Regional Time Stepping

Spatially and temporally adaptive algorithms can substantially improve the computational efficiency of many numerical schemes in computational mechanics and physics‐based animation. Recently, a crucial need for temporal adaptivity in the Material Point Method (MPM) is emerging due to the potentially substantial variation of material stiffness and velocities in multi‐material scenes. In this work, we propose a novel temporally adaptive symplectic Euler scheme for MPM with regional time stepping (RTS), where different time steps are used in different regions. We design a time stepping scheduler operating at the granularity of small blocks to maintain a natural consistency with the hybrid particle/grid nature of MPM. Our method utilizes the Sparse Paged Grid (SPGrid) data structure and simultaneously offers high efficiency and notable ease of implementation with a practical multi‐threaded particle‐grid transfer strategy. We demonstrate the efficacy of our asynchronous MPM method on various examples including elastic objects, granular media, and fluids.

[1]  Ming Gao,et al.  Animating fluid sediment mixture in particle-laden flows , 2018, ACM Trans. Graph..

[2]  Florence Bertails-Descoubes,et al.  A semi-implicit material point method for the continuum simulation of granular materials , 2016, ACM Trans. Graph..

[3]  Chenfanfu Jiang,et al.  Multi-species simulation of porous sand and water mixtures , 2017, ACM Trans. Graph..

[4]  Yuanming Hu Taichi: An Open-Source Computer Graphics Library , 2018, ArXiv.

[5]  Bo Zhu,et al.  Animating Sand as a Surface Flow , 2010, Eurographics.

[6]  S. Bardenhagen,et al.  The Generalized Interpolation Material Point Method , 2004 .

[7]  R. Courant,et al.  Über die partiellen Differenzengleichungen der mathematischen Physik , 1928 .

[8]  Sehoon Ha,et al.  Iterative Training of Dynamic Skills Inspired by Human Coaching Techniques , 2014, ACM Trans. Graph..

[9]  D. Sulsky Erratum: Application of a particle-in-cell method to solid mechanics , 1995 .

[10]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[11]  Daniel Weiskopf,et al.  Fully asynchronous SPH simulation , 2017, Symposium on Computer Animation.

[12]  Alexey Stomakhin,et al.  A material point method for snow simulation , 2013, ACM Trans. Graph..

[13]  Yijing Li,et al.  Asynchronous implicit backward Euler integration , 2016, Symposium on Computer Animation.

[14]  Ronald Fedkiw,et al.  Robust treatment of collisions, contact and friction for cloth animation , 2002, SIGGRAPH Courses.

[15]  Wei-Fan Chiang,et al.  GPU Acceleration of the Generalized Interpolation Material Point Method , 2011 .

[16]  Chenfanfu Jiang,et al.  The affine particle-in-cell method , 2015, ACM Trans. Graph..

[17]  R. Domínguez-tenreiro,et al.  Conservation Laws in Smooth Particle Hydrodynamics: The DEVA Code , 2003, astro-ph/0307312.

[18]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[19]  Zhen Chen,et al.  The material point method , 2015 .

[20]  Ronald Fedkiw,et al.  Asynchronous Evolution for Fully‐Implicit and Semi‐Implicit Time Integration , 2011, Comput. Graph. Forum.

[21]  Eftychios Sifakis,et al.  SPGrid: a sparse paged grid structure applied to adaptive smoke simulation , 2014, ACM Trans. Graph..

[22]  Ronald Fedkiw,et al.  Simulation of clothing with folds and wrinkles , 2003, SCA '03.

[23]  Jessica K. Hodgins,et al.  A finite element method for animating large viscoplastic flow , 2007, ACM Trans. Graph..

[24]  Eftychios Sifakis,et al.  Computing the Singular Value Decomposition of 3x3 matrices with minimal branching and elementary floating point operations , 2011 .

[25]  Kui Wu,et al.  Fast Fluid Simulations with Sparse Volumes on the GPU , 2018, Comput. Graph. Forum.

[26]  Wolfgang Straßer,et al.  Asynchronous Cloth Simulation , 2008 .

[27]  Andre Pradhana,et al.  A moving least squares material point method with displacement discontinuity and two-way rigid body coupling , 2018, ACM Trans. Graph..

[28]  Marie-Paule Cani,et al.  Space-Time Adaptive Simulation of Highly Deformable Substances , 1999 .

[29]  Chenfanfu Jiang,et al.  The material point method for simulating continuum materials , 2016, SIGGRAPH Courses.

[30]  L. Foster,et al.  Environmental concentrations of polyhydroxyalkanoates and their potential as bioindicators of pollution , 2001, Biotechnology Letters.

[31]  Prashant Goswami,et al.  Regional Time Stepping for SPH , 2014, Eurographics.

[32]  Ming C. Lin,et al.  Example-guided physically based modal sound synthesis , 2013, ACM Trans. Graph..

[33]  Craig Schroeder,et al.  Optimization Integrator for Large Time Steps , 2014, IEEE Transactions on Visualization and Computer Graphics.

[34]  Steve Marschner,et al.  Matching Real Fabrics with Micro-Appearance Models , 2015, ACM Trans. Graph..

[35]  Matthias Teschner,et al.  Eurographics/ Acm Siggraph Symposium on Computer Animation (2007) Weakly Compressible Sph for Free Surface Flows , 2022 .

[36]  C. Bina,et al.  CALCULATION OF ELASTIC PROPERTIES FROM THERMODYNAMIC EQUATION OF STATE PRINCIPLES , 1992 .

[37]  Zhen Chen,et al.  The Material Point Method: A Continuum-Based Particle Method for Extreme Loading Cases , 2016 .

[38]  Yan Liu,et al.  An Alternated Grid Updating Parallel Algorithm for Material Point Method Using OpenMP , 2010 .

[39]  K. Ruggirello,et al.  A COMPARISON OF PARALLELIZATION STRATEGIES FOR THE MATERIAL POINT METHOD , 2013 .

[40]  Nancy Argüelles,et al.  Author ' s , 2008 .

[41]  Matthias Harders,et al.  Element-wise mixed implicit-explicit integration for stable dynamic simulation of deformable objects , 2011, SCA '11.

[42]  Chenfanfu Jiang,et al.  Anisotropic elastoplasticity for cloth, knit and hair frictional contact , 2017, ACM Trans. Graph..

[43]  Andrew P. Witkin,et al.  Large steps in cloth simulation , 1998, SIGGRAPH.

[44]  Andre Pradhana,et al.  Drucker-prager elastoplasticity for sand animation , 2016, ACM Trans. Graph..

[45]  Ronald Fedkiw,et al.  Practical animation of liquids , 2001, SIGGRAPH.

[46]  Eftychios Sifakis,et al.  An adaptive generalized interpolation material point method for simulating elastoplastic materials , 2017, ACM Trans. Graph..

[47]  Mathieu Desbrun,et al.  Adaptive simulation of soft bodies in real-time , 2000, Proceedings Computer Animation 2000.

[48]  Lawrence E. Kinsler,et al.  Fundamentals of acoustics , 1950 .

[49]  Rahul Narain,et al.  Adaptive Physically Based Models in Computer Graphics , 2017, Comput. Graph. Forum.