The stochastic thermodynamics of computation

One of the major resource requirements of computers - ranging from biological cells to human brains to high-performance (engineered) computers - is the energy used to run them. Those costs of performing a computation have long been a focus of research in physics, going back to the early work of Landauer. One of the most prominent aspects of computers is that they are inherently nonequilibrium systems. However, the early research was done when nonequilibrium statistical physics was in its infancy, which meant the work was formulated in terms of equilibrium statistical physics. Since then there have been major breakthroughs in nonequilibrium statistical physics, which are allowing us to investigate the myriad aspects of the relationship between statistical physics and computation, extending well beyond the issue of how much work is required to erase a bit. In this paper I review some of this recent work on the `stochastic thermodynamics of computation'. After reviewing the salient parts of information theory, computer science theory, and stochastic thermodynamics, I summarize what has been learned about the entropic costs of performing a broad range of computations, extending from bit erasure to loop-free circuits to logically reversible circuits to information ratchets to Turing machines. These results reveal new, challenging engineering problems for how to design computers to have minimal thermodynamic costs. They also allow us to start to combine computer science theory and stochastic thermodynamics at a foundational level, thereby expanding both.

[1]  John C. Baez,et al.  Algorithmic thermodynamics , 2010, Mathematical Structures in Computer Science.

[2]  James P. Crutchfield,et al.  Transient Dissipation and Structural Costs of Physical Information Transduction , 2017, Physical review letters.

[3]  A. Alexandrova The British Journal for the Philosophy of Science , 1965, Nature.

[4]  G. Crooks Nonequilibrium Measurements of Free Energy Differences for Microscopically Reversible Markovian Systems , 1998 .

[5]  David J. Schwab,et al.  Landauer in the Age of Synthetic Biology: Energy Consumption and Information Processing in Biochemical Networks , 2015, bioRxiv.

[6]  Seth Lloyd Uncomputability and Physical Law , 2017, The Incomputable.

[7]  Christopher Jarzynski,et al.  Maxwell's refrigerator: an exactly solvable model. , 2013, Physical review letters.

[8]  Joshua A. Grochow,et al.  Beyond Number of Bit Erasures: New Complexity Questions Raisedby Recently discovered thermodynamic costs of computation , 2018, SIGA.

[9]  Touchette,et al.  Information-theoretic limits of control , 1999, Physical review letters.

[10]  Neal G. Anderson,et al.  Heat Dissipation in Nanocomputing: Lower Bounds From Physical Information Theory , 2013, IEEE Transactions on Nanotechnology.

[11]  Massimiliano Esposito,et al.  Ensemble and trajectory thermodynamics: A brief introduction , 2014, 1403.1777.

[12]  Jayne Thompson,et al.  Thermodynamics of complexity and pattern manipulation. , 2015, Physical review. E.

[13]  Masahito Ueda,et al.  Minimal energy cost for thermodynamic information processing: measurement and information erasure. , 2008, Physical review letters.

[14]  Jordan M. Horowitz,et al.  Thermodynamic Costs of Information Processing in Sensory Adaptation , 2014, PLoS Comput. Biol..

[15]  T. Sagawa Thermodynamic and logical reversibilities revisited , 2013, 1311.1886.

[16]  M. W. Shields An Introduction to Automata Theory , 1988 .

[17]  Neil Gershenfeld,et al.  Signal Entropy and the Thermodynamics of Computation , 1996, IBM Syst. J..

[18]  A. B. Boyd,et al.  Identifying functional thermodynamics in autonomous Maxwellian ratchets , 2015, 1507.01537.

[19]  Sheldon Goldstein,et al.  JOURNAL OF STATISTICAL PHYSICS Vol.67, Nos.5/6, June 1992 QUANTUM EQUILIBRIUM AND The , 2002 .

[20]  Gilles Dowek,et al.  The Physical Church-Turing Thesis and the Principles of Quantum Theory , 2011, Int. J. Found. Comput. Sci..

[21]  Paul Skrzypczyk,et al.  The role of quantum information in thermodynamics—a topical review , 2015, 1505.07835.

[22]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[23]  A. Karimi,et al.  Master‟s thesis , 2011 .

[24]  Massimiliano Esposito,et al.  Finite-time thermodynamics for a single-level quantum dot , 2009, 0909.3618.

[25]  W. Marsden I and J , 2012 .

[26]  R. Landauer Information is physical , 1991 .

[27]  R. J. Joenk,et al.  IBM journal of research and development: information for authors , 1978 .

[28]  T. Ouldridge,et al.  Fundamental Costs in the Production and Destruction of Persistent Polymer Copies. , 2016, Physical review letters.

[29]  D. Wolpert,et al.  Dependence of dissipation on the initial distribution over states , 2016, 1607.00956.

[30]  C. Jarzynski,et al.  Information Processing and the Second Law of Thermodynamics: An Inclusive Hamiltonian Approach. , 2013, 1308.5001.

[31]  U. Seifert Stochastic thermodynamics, fluctuation theorems and molecular machines , 2012, Reports on progress in physics. Physical Society.

[32]  W. H. Zurek,et al.  Thermodynamic cost of computation, algorithmic complexity and the information metric , 1989, Nature.

[33]  Sanjeev Arora,et al.  Computational Complexity: A Modern Approach , 2009 .

[34]  G. West Scale: The Universal Laws of Growth, Innovation, Sustainability, and the Pace of Life in Organisms, Cities, Economies, and Companies , 2017 .

[35]  J. P. Garrahan Simple bounds on fluctuations and uncertainty relations for first-passage times of counting observables. , 2017, Physical review. E.

[36]  James P. Crutchfield,et al.  Leveraging Environmental Correlations: The Thermodynamics of Requisite Variety , 2016, ArXiv.

[37]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[38]  M. Esposito Stochastic thermodynamics under coarse graining. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  James P. Crutchfield,et al.  Correlation-powered Information Engines and the Thermodynamics of Self-Correction , 2016, Physical review. E.

[40]  J. E. Thun Reports on Progress in Physics: vol. 29, parts I and II, 756 pp. (Published by The Institute of Physics and the Physical Society, London 1966) , 1967 .

[41]  M. Esposito,et al.  Finite-time erasing of information stored in fermionic bits. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[42]  Masahito Ueda,et al.  Second law of thermodynamics with discrete quantum feedback control. , 2007, Physical review letters.

[43]  Grant M. Rotskoff,et al.  Near-optimal protocols in complex nonequilibrium transformations , 2016, Proceedings of the National Academy of Sciences.

[44]  Sonja J. Prohaska,et al.  Innovation in gene regulation: the case of chromatin computation. , 2010, Journal of theoretical biology.

[45]  O. Maroney Generalizing Landauer's principle. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[46]  Pieter Rein ten Wolde,et al.  Thermodynamics of Computational Copying in Biochemical Systems , 2015, 1503.00909.

[47]  Massimiliano Esposito,et al.  Entropy production as correlation between system and reservoir , 2009, 0908.1125.

[48]  H. Hasegawa,et al.  Generalization of the Second Law for a Nonequilibrium Initial State , 2009, 0907.1569.

[49]  M. Esposito,et al.  Three faces of the second law. I. Master equation formulation. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[50]  Ming Li,et al.  An Introduction to Kolmogorov Complexity and Its Applications , 2019, Texts in Computer Science.

[51]  Charles H. Bennett Time/Space Trade-Offs for Reversible Computation , 1989, SIAM J. Comput..

[52]  Jordan M. Horowitz,et al.  Information-Theoretic Bound on the Entropy Production to Maintain a Classical Nonequilibrium Distribution Using Ancillary Control , 2017, Entropy.

[53]  Kalyan S. Perumalla,et al.  Introduction to Reversible Computing , 2013 .

[54]  Pablo Sartori,et al.  Thermodynamics of Error Correction , 2015, 1504.06407.

[55]  Gernot Schaller,et al.  Quantum and Information Thermodynamics: A Unifying Framework based on Repeated Interactions , 2016, 1610.01829.

[56]  John D. Barrow Kurt Gödel and the Foundations of Mathematics: Gödel and Physics , 2011 .

[57]  Chen Jia A solution to the reversible embedding problem for finite Markov chains , 2016, 1605.03502.

[58]  M. B. Pour-El,et al.  Noncomputability in models of physical phenomena , 1982 .

[59]  Vladimiro Sassone,et al.  Mathematical Structures in Computer Science vol. 14(3). Special issue on Concurrency and Coordination , 2004 .

[60]  Gualtiero Piccinini,et al.  The Physical Church–Turing Thesis: Modest or Bold? , 2011, The British Journal for the Philosophy of Science.

[61]  David J Schwab,et al.  Energetic costs of cellular computation , 2012, Proceedings of the National Academy of Sciences.

[62]  Christopher Jarzynski,et al.  Work and information processing in a solvable model of Maxwell’s demon , 2012, Proceedings of the National Academy of Sciences.

[63]  S Turgut Relations between entropies produced in nondeterministic thermodynamic processes. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[64]  G. Crooks Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[65]  Massimiliano Esposito,et al.  Second law and Landauer principle far from equilibrium , 2011, 1104.5165.

[66]  Y. Benenson Biomolecular computing systems: principles, progress and potential , 2012, Nature Reviews Genetics.

[67]  Udo Seifert,et al.  Universal Trade-Off between Power, Efficiency, and Constancy in Steady-State Heat Engines. , 2017, Physical review letters.

[68]  Lulu Qian,et al.  Supporting Online Material Materials and Methods Figs. S1 to S6 Tables S1 to S4 References and Notes Scaling up Digital Circuit Computation with Dna Strand Displacement Cascades , 2022 .

[69]  J. Horowitz Multipartite information flow for multiple Maxwell demons , 2015, 1501.05549.

[70]  Sosuke Ito,et al.  Information thermodynamics on causal networks. , 2013, Physical review letters.

[71]  Gernot Schaller,et al.  Thermodynamics of stochastic Turing machines , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[72]  Joshua A. Grochow,et al.  The Energetics of Computing in Life and Machines , 2019 .

[73]  Nicole Yunger Halpern,et al.  The resource theory of informational nonequilibrium in thermodynamics , 2013, 1309.6586.

[74]  Charles H. Bennett,et al.  Logical reversibility of computation , 1973 .

[75]  James P. Crutchfield,et al.  Above and Beyond the Landauer Bound: Thermodynamics of Modularity , 2017, Physical Review X.

[76]  Volodymyr Nekrashevych,et al.  Self-Similar Groups , 2005, 2304.11232.

[77]  Zurek,et al.  Algorithmic randomness and physical entropy. , 1989, Physical review. A, General physics.

[78]  Michael Satosi Watanabe,et al.  Information Theoretical Analysis of Multivariate Correlation , 1960, IBM J. Res. Dev..

[79]  J. Herskowitz,et al.  Proceedings of the National Academy of Sciences, USA , 1996, Current Biology.

[80]  David H. Wolpert Correction: Wolpert, D.H. The Free Energy Requirements of Biological Organisms; Implications for Evolution. Entropy 2016, 18, 138 , 2016, Entropy.

[81]  K. Palem,et al.  Inexactness and a future of computing , 2014, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[82]  Santanu Chattopadhyay,et al.  Progress in VLSI Design and Test , 2012, Lecture Notes in Computer Science.

[83]  Andrew Phillips,et al.  Synthesizing and tuning stochastic chemical reaction networks with specified behaviours , 2018, Journal of The Royal Society Interface.

[84]  Michael Sipser,et al.  Introduction to the Theory of Computation , 1996, SIGA.

[85]  A. C. Barato,et al.  Unifying three perspectives on information processing in stochastic thermodynamics. , 2013, Physical review letters.

[86]  David H. Wolpert,et al.  Extending Landauer's Bound from Bit Erasure to Arbitrary Computation , 2015, 1508.05319.

[87]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[88]  Massimiliano Esposito,et al.  Thermoelectric efficiency at maximum power in a quantum dot , 2008, 0808.0216.

[89]  S. Lloyd Ultimate physical limits to computation , 1999, Nature.

[90]  Massimiliano Esposito,et al.  Three detailed fluctuation theorems. , 2009, Physical review letters.

[91]  L. Gammaitoni,et al.  Landauer Bound for Analog Computing Systems , 2016, Physical review. E.

[92]  Robert Wille,et al.  Reversible Circuits: Recent Accomplishments and Future Challenges for an Emerging Technology - (Invited Paper) , 2012, VDAT.

[93]  Todd R. Gingrich,et al.  Dissipation Bounds All Steady-State Current Fluctuations. , 2015, Physical review letters.

[94]  W. H. Zurek Complexity, Entropy and the Physics of Information , 1990 .

[95]  J Eisert,et al.  Second law of thermodynamics under control restrictions. , 2016, Physical review. E.

[96]  J. Pearl Causality: Models, Reasoning and Inference , 2000 .

[97]  Eric Lutz,et al.  Comment on "Minimal energy cost for thermodynamic information processing: measurement and information erasure". , 2010, Physical review letters.

[98]  Dean J. Driebe,et al.  Generalization of the second law for a transition between nonequilibrium states , 2010 .

[99]  Cristopher Moore,et al.  The Nature of Computation , 2011 .

[100]  Scott Aaronson,et al.  NP-complete Problems and Physical Reality , 2005, Electron. Colloquium Comput. Complex..

[101]  J. Sethna Statistical Mechanics: Entropy, Order Parameters, and Complexity , 2021 .

[102]  C. Jarzynski Equalities and Inequalities: Irreversibility and the Second Law of Thermodynamics at the Nanoscale , 2011 .

[103]  Charles H. Bennett,et al.  Dissipation-error tradeoff in proofreading. , 1979, Bio Systems.

[104]  Jonathan Oppenheim,et al.  A Resource Theory for Work and Heat , 2016, ArXiv.

[105]  J. Parrondo,et al.  Dissipation: the phase-space perspective. , 2007, Physical review letters.

[106]  Roberto Bruni,et al.  Models of Computation , 2017, Texts in Theoretical Computer Science. An EATCS Series.

[107]  J. Urry Complexity , 2006, Interpreting Art.

[108]  Todd R. Gingrich,et al.  Fundamental Bounds on First Passage Time Fluctuations for Currents. , 2017, Physical review letters.

[109]  Christos H. Papadimitriou,et al.  Kurt Godel and the Foundations of Mathematics: Horizons Of Truth , 2014 .

[110]  James P. Crutchfield,et al.  Computational Mechanics of Input–Output Processes: Structured Transformations and the ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \ , 2014, Journal of Statistical Physics.

[111]  Moore,et al.  Unpredictability and undecidability in dynamical systems. , 1990, Physical review letters.

[112]  Logan Kugler Is "good enough" computing good enough? , 2015, Commun. ACM.

[113]  M. Mézard,et al.  Journal of Statistical Mechanics: Theory and Experiment , 2011 .

[114]  Michael J. Berry,et al.  Metabolically Efficient Information Processing , 2001, Neural Computation.

[115]  Natesh Ganesh,et al.  Irreversibility and dissipation in finite-state automata , 2013 .

[116]  Matthew Cook,et al.  Computation with finite stochastic chemical reaction networks , 2008, Natural Computing.

[117]  David H. Wolpert,et al.  The Free Energy Requirements of Biological Organisms; Implications for Evolution , 2016, Entropy.

[118]  Susanne Still,et al.  The thermodynamics of prediction , 2012, Physical review letters.

[119]  Sebastian Deffner,et al.  Quantum speed limits: from Heisenberg’s uncertainty principle to optimal quantum control , 2017, 1705.08023.

[120]  Oron Shagrir,et al.  Computability: Turing, Gdel, Church, and Beyond , 2013 .

[121]  Seth Lloyd,et al.  Information-theoretic approach to the study of control systems , 2001, physics/0104007.

[122]  C. Broeck,et al.  Stochastic thermodynamics for linear kinetic equations. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[123]  Esslli Site,et al.  Models of Computation , 2012 .

[124]  T. Sagawa,et al.  Thermodynamics of information , 2015, Nature Physics.

[125]  N. G. Anderson,et al.  Toward Nanoprocessor Thermodynamics , 2012, IEEE Transactions on Nanotechnology.

[126]  Sebastian Goldt,et al.  Stochastic thermodynamics of learning , 2016, Physical review letters.

[127]  M. Ohzeki,et al.  Quantum Speed Limit is Not Quantum. , 2017, Physical review letters.

[128]  S. Laughlin Energy as a constraint on the coding and processing of sensory information , 2001, Current Opinion in Neurobiology.

[129]  G. Davis,et al.  Current Opinion in Neurobiology 2011 , 2011 .

[130]  Masahito Ueda,et al.  Nonequilibrium thermodynamics of feedback control. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[131]  Caves Information and entropy. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[132]  T. Rogers,et al.  From empirical data to time-inhomogeneous continuous Markov processes. , 2016, Physical review. E.

[133]  Frank Julicher,et al.  Statistics of Infima and Stopping Times of Entropy Production and Applications to Active Molecular Processes , 2016, 1604.04159.

[134]  Udo Seifert,et al.  An autonomous and reversible Maxwell's demon , 2013, 1302.3089.

[135]  Andre C. Barato,et al.  Thermodynamic cost of external control , 2017, 1704.03480.

[136]  Ho-Lin Chen,et al.  Deterministic function computation with chemical reaction networks , 2012, Natural Computing.

[137]  Charles H. Bennett,et al.  The thermodynamics of computation—a review , 1982 .

[138]  F. Ritort,et al.  Finite-time generalization of the thermodynamic uncertainty relation. , 2017, Physical review. E.

[139]  Zurek,et al.  Decoherence, chaos, and the second law. , 1994, Physical review letters.