Determinantal and permanental representations of convolved Lucas polynomials

In the present paper, we define the convolved generalized Lucas polynomials as an extension of the classical convolved Fibonacci numbers. Then we give some determinantal and permanental representations of this new integer sequence.

[1]  Kenan Kaygisiz,et al.  Generalized Bivariate Lucas p-Polynomials and Hessenberg Matrices , 2012 .

[2]  José L. Ramírez,et al.  Some Properties of Convolved -Fibonacci Numbers , 2013 .

[3]  Kenan Kaygisiz,et al.  A new method to compute the terms of generalized order-k Fibonacci numbers , 2013 .

[4]  Gwang Yeon Lee,et al.  Some Properties of the (p, q)-Fibonacci and (p, q)-Lucas Polynomials , 2012, J. Appl. Math..

[5]  Cheng-Yi Yu,et al.  A new algorithm for computing the inverse and the determinant of a Hessenberg matrix , 2011, Appl. Math. Comput..

[6]  Hessenberg Matrices and Integer Sequences , 2010 .

[7]  P. Moree Convoluted convolved Fibonacci numbers , 2003, math/0311205.

[8]  Ahmet Ali Öcal,et al.  On the representation of k-generalized Fibonacci and Lucas numbers , 2005, Appl. Math. Comput..

[9]  A. Stakhov,et al.  On the Fibonacci and Lucas p-numbers, their sums, families of bipartite graphs and permanents of certain matrices , 2009 .

[10]  Wenpeng Zhang SOME IDENTITIES INVOLVING THE FIBONACCI NUMBERS , 1997 .

[11]  V. Hoggatt,et al.  FIBONACCI CONVOLUTION SEQUENCES , 2022 .

[12]  Hsuan-Chu Li On Fibonacci-Hessenberg matrices and the Pell and Perrin numbers , 2012, Appl. Math. Comput..

[13]  Fatih Yilmaz,et al.  Some Properties of Padovan Sequence by Matrix Methods , 2012, Ars Comb..

[14]  Hana Kim,et al.  A generalization of Lucas polynomial sequence , 2009, Discret. Appl. Math..

[15]  Jingzhe Wang Some new results for the (p,q)-Fibonacci and Lucas polynomials , 2014 .

[16]  Permanents and Determinants, Weighted Isobaric Polynomials, and Integer Sequences , 2012, 1209.4591.

[17]  Kenan Kaygisiz,et al.  Determinant and Permanent of Hessenberg Matrix and Generalized Lucas Polynomials , 2011, 1111.4067.

[18]  José L. Ramírez On convolved generalized Fibonacci and Lucas polynomials , 2014, Appl. Math. Comput..

[19]  D. Bozkurt,et al.  Hessenberg matrices and the Pell and Perrin numbers , 2011 .

[20]  É. Lucas,et al.  Theorie des Fonctions Numeriques Simplement Periodiques. [Continued] , 1878 .

[21]  É. Lucas Theorie des Fonctions Numeriques Simplement Periodiques , 1878 .

[22]  Tianming Wang,et al.  Some Identities Involving the Generalized Fibonacci and Lucas Numbers , 2004, Ars Comb..

[23]  Xi Chen,et al.  Generalized Fibonacci Polynomials and Fibonomial Coefficients , 2013, 1306.6511.

[24]  An Identity Between Permanents and Determinants , 1969 .