General quantum measurements in relativistic quantum field theory

Single particle detection is described in a limited way by simple models of measurements in quantum field theory. We show that a general approach, using Kraus operators in spacetime constructed from natural combinations of fields, leads to an efficient model of a single particle detector. The model is free from any auxiliary objects as it is defined solely within the existing quantum field framework. It can be applied to a large family of setup where the time resolution of the measurement is relevant, such as Bell correlations or sequential measurement. We also discuss limitations and working regimes of the model.

[1]  W. Belzig,et al.  Effect of relativity and vacuum fluctuations on quantum measurement , 2022, Physical Review D.

[2]  G. Rempe,et al.  Detecting an Itinerant Optical Photon Twice without Destroying It. , 2021, Physical review letters.

[3]  D. Brody,et al.  Quantum measurement of space-time events , 2020, Journal of Physics A: Mathematical and Theoretical.

[4]  Charis Anastopoulos,et al.  Time of arrival and localization of relativistic particles , 2018, Journal of Mathematical Physics.

[5]  H. Weinfurter,et al.  Event-Ready Bell Test Using Entangled Atoms Simultaneously Closing Detection and Locality Loopholes. , 2016, Physical review letters.

[6]  A. Bednorz Objective realism and freedom of choice in relativistic quantum field theory , 2016, 1605.09129.

[7]  E. Knill,et al.  A strong loophole-free test of local realism , 2015, 2016 Conference on Lasers and Electro-Optics (CLEO).

[8]  A. Zeilinger,et al.  Significant-Loophole-Free Test of Bell's Theorem with Entangled Photons. , 2015, Physical review letters.

[9]  S. Wehner,et al.  Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres , 2015, Nature.

[10]  Achim Kempf,et al.  Renormalized Unruh-DeWitt particle detector models for boson and fermion fields , 2015, 1506.02046.

[11]  D. J. Twitchen,et al.  Manipulating a qubit through the backaction of sequential partial measurements and real-time feedback , 2013, Nature Physics.

[12]  A. Bednorz Relativistic invariance of the vacuum , 2012, 1209.0209.

[13]  A. Domenico,et al.  Revealing Bell’s nonlocality for unstable systems in high energy physics , 2011, 1111.4797.

[14]  K. Franke,et al.  Noninvasiveness and time symmetry of weak measurements , 2011, 1108.1305.

[15]  C. F. Roos,et al.  Compatibility and noncontextuality for sequential measurements , 2009, 0912.4846.

[16]  Ludvig Dmitrievich Faddeev,et al.  Faddeev-Popov ghosts , 2009, Scholarpedia.

[17]  F. Costa,et al.  Modeling a particle detector in field theory , 2008, 0805.0806.

[18]  J. Louko,et al.  How often does the Unruh–DeWitt detector click? Regularization by a spatial profile , 2006, gr-qc/0606067.

[19]  B. Hu,et al.  Accelerated detector-quantum field correlations: From vacuum fluctuations to radiation flux , 2005, gr-qc/0507054.

[20]  L. Ford,et al.  Minkowski vacuum stress tensor fluctuations , 2005, gr-qc/0506026.

[21]  Daniel R. Terno,et al.  Quantum Information and Relativity Theory , 2002, quant-ph/0212023.

[22]  C. Rovelli,et al.  Relativistic quantum measurement , 2002, gr-qc/0203056.

[23]  Eberhard,et al.  Background level and counter efficiencies required for a loophole-free Einstein-Podolsky-Rosen experiment. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[24]  D. Raine,et al.  Does a uniformly accelerated quantum oscillator radiate? , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[25]  B. Hao,et al.  EQUILIBRIUM AND NONEQUILIBRIUM FORMALISMS MADE UNIFIED , 1985 .

[26]  H. Weldon Covariant Calculations at Finite Temperature: The Relativistic Plasma , 1982 .

[27]  W. Unruh Notes on black-hole evaporation , 1976 .

[28]  S. Carusotto Brownian motion of a quantum oscillator , 1975 .

[29]  M. Horne,et al.  Experimental Consequences of Objective Local Theories , 1974 .

[30]  A. Shimony,et al.  Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .

[31]  T. Matsubara A New Approach to Quantum-Statistical Mechanics , 1955 .

[32]  G. C. Wick The Evaluation of the Collision Matrix , 1950 .

[33]  W. Pauli,et al.  On the Invariant regularization in relativistic quantum theory , 1949 .

[34]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[35]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[36]  Pieter Lagrou States , 2019, Europe’s Postwar Periods 1989, 1945, 1918.

[37]  J. S. BELLt Einstein-Podolsky-Rosen Paradox , 2018 .

[38]  赵安,et al.  On analytic formulas of Feynman propagators in position space , 2010 .

[39]  M. Scully The Time-Dependent Schrödinger Equation Revisited: Quantum Optical and Classical Maxwell Routes to Schrödinger’s Wave Equation , 2009 .

[40]  David E. Miller,et al.  Quantum Statistical Mechanics , 2002 .

[41]  N. P. Landsman,et al.  Real- and imaginary-time field theory at finite temperature and density , 1987 .