Phosphine interactions with high oxidation state metals

[1]  A. Odom,et al.  Quantifying ligand effects in high-oxidation-state metal catalysis. , 2017, Nature chemistry.

[2]  D. Holmes,et al.  Weakly Coordinating yet Ion Paired: Anion Effects on an Internal Rearrangement , 2017 .

[3]  P. T. Wolczanski Flipping the Oxidation State Formalism: Charge Distribution in Organometallic Complexes As Reported by Carbon Monoxide , 2017 .

[4]  Jia Zhou,et al.  Cationic Two-Coordinate Complexes of Pd(I) and Pt(I) Have Longer Metal-Ligand Bonds Than Their Neutral Counterparts , 2016 .

[5]  B. P. Sullivan,et al.  Homoleptic Tris-Diphosphine Re(I) and Re(II) Complexes and Re(II) Photophysics and Photochemistry. , 2015, Inorganic chemistry.

[6]  T. Müller,et al.  Quantitative Assessment of the Lewis Acidity of Silylium Ions , 2015 .

[7]  R. Staples,et al.  Synthesis and Structure of Chromium(VI) Nitrido Cyclopentadienyl Complexes , 2015 .

[8]  Jesse G. Park,et al.  Electronic effects of ligand substitution on spin crossover in a series of diiminoquinonoid-bridged Fe(II)2 complexes. , 2015, Inorganic chemistry.

[9]  R. D. Bemowski,et al.  Effective donor abilities of E-t-Bu and EPh (E = O, S, Se, Te) to a high valent transition metal. , 2014, Dalton transactions.

[10]  I. Sivaev,et al.  Lewis acidity of boron compounds , 2014 .

[11]  P. Andersson,et al.  Asymmetric hydrogenation of olefins using chiral Crabtree-type catalysts: scope and limitations. , 2014, Chemical reviews.

[12]  A. Mann,et al.  Hydroformylation for Organic Synthesis , 2013 .

[13]  Victor Snieckus,et al.  Palladium-catalyzed cross-coupling: a historical contextual perspective to the 2010 Nobel Prize. , 2012, Angewandte Chemie.

[14]  R. Staples,et al.  Evaluation of donor and steric properties of anionic ligands on high valent transition metals. , 2012, Inorganic chemistry.

[15]  M. Mitoraj,et al.  Sigma-donor and pi-acceptor properties of phosphorus ligands: an insight from the natural orbitals for chemical valence. , 2010, Inorganic chemistry.

[16]  J. Hartwig Organotransition Metal Chemistry: From Bonding to Catalysis , 2009 .

[17]  P. Braunstein,et al.  SHOP-type nickel complexes with alkyl substituents on phosphorus, synthesis and catalytic ethylene oligomerization. , 2008, Dalton transactions.

[18]  D. Peeters,et al.  How important is metal-ligand back-bonding toward YX3 ligands (Y = N, P, C, Si)? an NBO analysis , 2007 .

[19]  W. Levason,et al.  Tin(IV) Fluoride Complexes with Tertiary Phosphane Ligands – A Comparison of Hard and Soft Donor Ligands , 2006 .

[20]  R. Grubbs Olefin-metathesis catalysts for the preparation of molecules and materials (Nobel Lecture). , 2006, Angewandte Chemie.

[21]  Gerard Parkin,et al.  Valence, Oxidation Number, and Formal Charge: Three Related but Fundamentally Different Concepts , 2006 .

[22]  D. Peeters,et al.  Insight into metal-phosphorus bonding from analysis of the electronic structure of redox pairs of metal-phosphine complexes , 2005 .

[23]  O. Kühl Predicting the net donating ability of phosphines: do we need sophisticated theoretical methods? , 2005 .

[24]  N. Koga,et al.  Quantifying the electronic effect of substituted phosphine ligands via molecular electrostatic potential. , 2002, Inorganic chemistry.

[25]  J. Loch,et al.  Computed ligand electronic parameters from quantum chemistry and their relation to Tolman parameters, Lever parameters, and Hammett constants. , 2001, Inorganic chemistry.

[26]  A. Prock,et al.  The stereoelectronic parameters of phosphites. The quantitative analysis of ligand effects (QALE) , 2000 .

[27]  M. Beckett,et al.  A convenient n.m.r. method for the measurement of Lewis acidity at boron centres: correlation of reaction rates of Lewis acid initiated epoxide polymerizations with Lewis acidity , 1996 .

[28]  M. Caruthers,et al.  Synthesis of Phosphorodithioate DNA via Sulfur-Linked, Base-Labile Protecting Groups(1). , 1996, The Journal of organic chemistry.

[29]  C. Cummins,et al.  A Chromium(VI) Nitrido−Silylmethyl Complex and a Chromium(V) μ-Nitrido Dimer: Synthetic and Structural Details , 1996 .

[30]  R. Drago DELTA E-DELTA C ANALYSIS OF PHOSPHINE BASICITY , 1995 .

[31]  J. M. Simoes,et al.  Bonding and energetics of phosphorus (III) ligands in transition metal complexes , 1994 .

[32]  A. Prock,et al.  The quantitative analysis of ligand effects (QALE). The aryl effect , 1993 .

[33]  S. Nguyen,et al.  Ring-opening metathesis polymerization (ROMP) of norbornene by a Group VIII carbene complex in protic media , 1992 .

[34]  A. Guy Orpen,et al.  Structural systematics: the role of P-A .sigma.* orbitals in metal-phosphorus .pi.-bonding in redox-related pairs of M-PA3 complexes (A = R, Ar, OR; R = alkyl) , 1990 .

[35]  A. Prock,et al.  Quantitative analysis of ligand effects. 2. Steric and electronic factors influencing transition-metal-phosphorus(III) bonding , 1987 .

[36]  M. N. Golovin,et al.  Quantitative separation of .sigma.- and .pi.-components of transition metal-phosphorus bonding and the application of ligand effects in organometallic chemistry , 1985 .

[37]  Tamás Bartik,et al.  Substituenteneinflüsse auf die basizität von phosphorliganden in R3P-Ni(CO)3-komplexen , 1984 .

[38]  T. Allman,et al.  The basicity of phosphines , 1982 .

[39]  C. A. Tolman,et al.  Steric effects of phosphorus ligands in organometallic chemistry and homogeneous catalysis , 1977 .

[40]  V. Gutmann,et al.  The acceptor number — A quantitative empirical parameter for the electrophilic properties of solvents , 1975 .

[41]  C. A. Tolman,et al.  Electron donor-acceptor properties of phosphorus ligands. Substituent additivity , 1970 .

[42]  V. Gutmann,et al.  Donorstärken in 1,2-Dichloräthan , 1966 .