Scheme for Probabilistic Remotely Preparing a d-Dimensional Equatorial Quantum State

Abstract We present a scheme for probabilistic remote preparation of a d-dimensional equatorial quantum state. In the scheme, a bipartite d-dimensional partial entangled state is used as the quantum channel, and the single-qudit projective measurement and appropriate unitary transformation are needed. As a special, the remote preparation in three dimension is studied.

[1]  D. Deutsch,et al.  Rapid solution of problems by quantum computation , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[2]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[3]  A. Zeilinger Experiment and the Foundations of Quantum Physics , 1999 .

[4]  M. Murao,et al.  Quantum telecloning and multiparticle entanglement , 1998, quant-ph/9806082.

[5]  Julia Kempe,et al.  Multiparticle entanglement and its applications to cryptography , 1999 .

[6]  Guang-Can Guo,et al.  Probabilistic teleportation and entanglement matching , 2000 .

[7]  Sergio Albeverio,et al.  Teleportation of general finite-dimensional quantum systems , 2000 .

[8]  A. Pati Minimum classical bit for remote preparation and measurement of a qubit , 1999, quant-ph/9907022.

[9]  H. Lo Classical-communication cost in distributed quantum-information processing: A generalization of quantum-communication complexity , 1999, quant-ph/9912009.

[10]  Vlatko Vedral,et al.  Quantum-information distribution via entanglement , 1999, quant-ph/9909031.

[11]  T. Berger,et al.  Low-entanglement remote state preparation. , 2001, Physical review letters.

[12]  C. H. Bennett,et al.  Remote state preparation. , 2000, Physical review letters.

[13]  B. Shi,et al.  Remote state preparation of an entangled state , 2002 .

[14]  William K. Wootters,et al.  Erratum: Remote State Preparation [Phys. Rev. Lett. 87, 077902 (2001)] , 2002 .

[15]  K. T. Chung,et al.  Auger width and branching ratios for berylliumlike 1 s 2 s 2 np 1 P o and 1 s 2 p 3 1 P o resonances and photoionization of beryllium from 1 s 2 2 s 2 1 S , 2002 .

[16]  B. Zeng,et al.  Remote-state preparation in higher dimension and the parallelizable manifold Sn-1 , 2001, quant-ph/0105088.

[17]  K. Gao,et al.  Experimental implementation of remote state preparation by nuclear magnetic resonance , 2002, quant-ph/0202004.

[18]  G. Long,et al.  General scheme for superdense coding between multiparties , 2001, quant-ph/0110112.

[19]  Debbie W Leung,et al.  Oblivious remote state preparation. , 2003, Physical review letters.

[20]  Iulia Ghiu Asymmetric quantum telecloning of d-level systems and broadcasting of entanglement to different locations using the many-to-many communication protocol , 2003 .

[21]  Yu-zhu Wang,et al.  Remote preparation of a two-particle entangled state , 2003 .

[22]  B. Sanders,et al.  Optimal remote state preparation. , 2002, Physical review letters.

[23]  Yuzhu Wang,et al.  SCHEMES FOR REMOTELY PREPARING MULTIPARTITE EQUATORIAL ENTANGLED STATES IN HIGH DIMENSIONS , 2004 .

[24]  Zhan You-Bang,et al.  Remote State Preparation of a Greenberger–Horne–Zeilinger Class State , 2005 .

[25]  Hong-Yi Dai,et al.  Classical communication cost and remote preparation of the four-particle GHZ class state , 2006 .

[26]  Zhan You-Bang,et al.  Schemes for Probabilistic Teleportation of an Unknown Three-Particle Three-Level Entangled State , 2006 .

[27]  Li Wanli,et al.  Erratum: Probabilistic teleportation and entanglement matching [Phys. Rev. A 61, 034301 (2000)] , 2007 .