A review on optimization algorithms and application to wind energy integration to grid

In order to meet power needs, with concern for economics and environment, wind energy conversion is gradually gaining interest as a suitable source of renewable energy. To maximize the power extraction from the wind, optimization techniques are used at the various module of a wind farm starting from wind farm design for siting, sizing, optimal placement and sizing of distributed generation (DG) sources, generation scheduling, tuning of PID controller, control of wind energy conversion system (WECS) etc. This paper mainly focuses on the optimization algorithms (mostly the swarm based) in relation to integration of the wind farm with the grid. The paper here gives a precise idea about different optimization techniques, their advantage and disadvantage with respect to a wind farm. This review will enable the researchers to open the mind to explore possible applications in this field as well as beyond this area.

[1]  M. Y. Hussaini,et al.  Placement of wind turbines using genetic algorithms , 2005 .

[2]  Ahmed Bensenouci,et al.  PID controllers design for a power plant using Bacteria Foraging Algorithm , 2011, 2011 Saudi International Electronics, Communications and Photonics Conference (SIECPC).

[3]  A MohamedImran,et al.  Optimal size and siting of multiple distributed generators in distribution system using bacterial foraging optimization , 2014, Swarm Evol. Comput..

[4]  R. Ramakumar,et al.  An approach to quantify the technical benefits of distributed generation , 2004, IEEE Transactions on Energy Conversion.

[5]  Mohamed Cherkaoui,et al.  PITCH ANGLE CONTROL FOR VARIABLE SPEED WIND TURBINES USING GENETIC ALGORITHM CONTROLLER , 2012 .

[6]  Palle Andersen,et al.  Comparing PI and Robust Pitch Controllers on a 400kw Wind Turbine by full scale Tests , 1997 .

[7]  Katsuhiko Ogata,et al.  Modern Control Engineering , 1970 .

[8]  Mohamed Maaroufi,et al.  Probabilistic economic/environmental power dispatch of power system integrating renewable energy sources , 2014 .

[9]  Chih-Wen Liu,et al.  Non-smooth/non-convex economic dispatch by a novel hybrid differential evolution algorithm , 2007 .

[10]  J. Sadeh,et al.  Optimal sizing of hybrid wind/photovoltaic/battery considering the uncertainty of wind and photovoltaic power using Monte Carlo , 2012, 2012 11th International Conference on Environment and Electrical Engineering.

[11]  A. Bensenouci,et al.  Simulated Annealing Optimized and Neural Networks Self-Tuned PID Voltage Regulator for a Single-Machine Power System , 2006, IECON 2006 - 32nd Annual Conference on IEEE Industrial Electronics.

[12]  James F. Manwell,et al.  Algorithms for Offshore Wind Farm Layout Optimization , 2008 .

[13]  Tore Hägglund,et al.  Automatic Tuning and Adaptation for PID Controllers—A Survey , 1992 .

[14]  Fuli Wang,et al.  Hybrid genetic algorithm for economic dispatch with valve-point effect , 2008 .

[15]  P. Attaviriyanupap,et al.  A Hybrid EP and SQP for Dynamic Economic Dispatch with Nonsmooth Fuel Cost Function , 2002, IEEE Power Engineering Review.

[16]  R. Lozi UN ATTRACTEUR ÉTRANGE (?) DU TYPE ATTRACTEUR DE HÉNON , 1978 .

[17]  Mauridhi Hery Purnomo,et al.  Maximum Output Power Tracking of Wind Turbine Using Intelligent Control , 2011 .

[18]  Rajesh Kumar,et al.  A review on particle swarm optimization algorithms and their applications to data clustering , 2011, Artificial Intelligence Review.

[19]  Javier Serrano González,et al.  Optimization of wind farm turbines layout using an evolutive algorithm , 2010 .

[20]  John K. Kaldellis,et al.  The wind potential impact on the maximum wind energy penetration in autonomous electrical grids , 2008 .

[21]  C.-L. Chiang,et al.  Genetic-based algorithm for power economic load dispatch , 2007 .

[22]  Serap Ulusam Seçkiner,et al.  Design of wind farm layout using ant colony algorithm , 2012 .

[23]  Z. N. Zakaria,et al.  Firefly Algorithm technique for solving Economic Dispatch problem , 2012, 2012 IEEE International Power Engineering and Optimization Conference Melaka, Malaysia.

[24]  Consolación Gil,et al.  Optimization methods applied to renewable and sustainable energy: A review , 2011 .

[25]  Thomas Stützle,et al.  Ant Colony Optimization and Swarm Intelligence, 5th International Workshop, ANTS 2006, Brussels, Belgium, September 4-7, 2006, Proceedings , 2006, ANTS Workshop.

[26]  Bryan A. Norman,et al.  Heuristic methods for wind energy conversion system positioning , 2004 .

[27]  Prakash Kumar Hota,et al.  Gravitational Search Algorithm for Optimal Economic Dispatch , 2012 .

[28]  H. Camblong Digital robust control of a variable speed pitch regulated wind turbine for above rated wind speeds , 2008 .

[29]  M. Sedighizadeh,et al.  A particle swarm optimization for sitting and sizing of Distributed Generation in distribution network to improve voltage profile and reduce THD and losses , 2008, 2008 43rd International Universities Power Engineering Conference.

[30]  R. Adapa,et al.  A review of selected optimal power flow literature to 1993. I. Nonlinear and quadratic programming approaches , 1999 .

[31]  Youxin Luo,et al.  The controlling parameters tuning and its application of fractional order PID bacterial foraging-based oriented by particle swarm optimization , 2009, 2009 IEEE International Conference on Intelligent Computing and Intelligent Systems.

[32]  Kevin M. Passino,et al.  Bacterial Foraging Optimization , 2010, Int. J. Swarm Intell. Res..

[33]  Suresh Chandra Satapathy,et al.  Modified Teaching-Learning-Based Optimization algorithm for global numerical optimization - A comparative study , 2014, Swarm Evol. Comput..

[34]  Taher Niknam,et al.  Probabilistic multiobjective wind-thermal economic emission dispatch based on point estimated method , 2012 .

[35]  R. Venkata Rao,et al.  Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems , 2011, Comput. Aided Des..

[36]  M. E. El-Hawary,et al.  Optimal Distributed Generation Allocation and Sizing in Distribution Systems via Artificial Bee Colony Algorithm , 2011, IEEE Transactions on Power Delivery.

[37]  G. Joós,et al.  Models for Quantifying the Economic Benefits of Distributed Generation , 2008, IEEE Transactions on Power Systems.

[38]  Andrew Kusiak,et al.  Dynamic control of wind turbines , 2010 .

[39]  Sancho Salcedo-Sanz,et al.  Offshore wind farm design with the Coral Reefs Optimization algorithm , 2014 .

[40]  S. Muthukumar,et al.  Estimator based neuro-fuzzy control for maximum power extraction from wind electrical power generation system , 2010, 2010 IEEE International Conference on Computational Intelligence and Computing Research.

[41]  Hong-Tzer Yang,et al.  Evolutionary programming based economic dispatch for units with non-smooth fuel cost functions , 1996 .

[42]  P. Bhasaputra,et al.  Multi-objective optimal distributed generation placement using simulated annealing , 2010, ECTI-CON2010: The 2010 ECTI International Confernce on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology.

[43]  Ahmet Serdar Yilmaz,et al.  Pitch angle control in wind turbines above the rated wind speed by multi-layer perceptron and radial basis function neural networks , 2009, Expert Syst. Appl..

[44]  Xin-She Yang,et al.  Firefly Algorithms for Multimodal Optimization , 2009, SAGA.

[45]  Dervis Karaboga,et al.  Artificial bee colony algorithm , 2010, Scholarpedia.

[46]  Sancho Salcedo-Sanz,et al.  A review of recent evolutionary computation-based techniques in wind turbines layout optimization problems , 2011, Central European Journal of Computer Science.

[47]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[48]  Javier Serrano González,et al.  A review and recent developments in the optimal wind-turbine micro-siting problem , 2014 .

[49]  M. N. Mansouri,et al.  Study of performance of a variable-speed wind turbine with pitch control based on a Permanent Magnet Synchronous Generator , 2011, Eighth International Multi-Conference on Systems, Signals & Devices.

[50]  Yasuhiro Hayashi,et al.  Application of tabu search to optimal placement of distributed generators , 2001, 2001 IEEE Power Engineering Society Winter Meeting. Conference Proceedings (Cat. No.01CH37194).

[51]  Allen J. Wood,et al.  Power Generation, Operation, and Control , 1984 .

[52]  P. Aravindhababu,et al.  Economic dispatch based on optimal lambda using radial basis function network , 2002 .

[53]  E.A. DeMeo,et al.  Wind plant integration [wind power plants] , 2005, IEEE Power and Energy Magazine.

[54]  G. Sheblé,et al.  Genetic algorithm solution of economic dispatch with valve point loading , 1993 .

[55]  Leon O. Chua,et al.  Practical Numerical Algorithms for Chaotic Systems , 1989 .

[56]  S. Iniyan,et al.  A review of wind energy technologies , 2007 .

[57]  Jie Zhang,et al.  Optimizing the arrangement and the selection of turbines for wind farms subject to varying wind conditions , 2013 .

[58]  Aniruddha Bhattacharya,et al.  Solution of multi-objective optimal power flow using gravitational search algorithm , 2012 .

[59]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[60]  Thomas Bäck,et al.  An Overview of Evolutionary Algorithms for Parameter Optimization , 1993, Evolutionary Computation.

[61]  J.A. Momoh,et al.  An approach to determine Distributed Generation (DG) benefits in power networks , 2008, 2008 40th North American Power Symposium.

[62]  Saeed Tavakoli,et al.  Improved cuckoo search for reliability optimization problems , 2013, Comput. Ind. Eng..

[63]  Leandro dos Santos Coelho,et al.  Tuning of PID controller for an automatic regulator voltage system using chaotic optimization approach , 2009 .

[64]  V. Ajjarapu,et al.  Optimal allocation of dynamic VAR for enhancing stability and power quality , 2008, 2008 IEEE Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century.

[65]  Hamed Shah-Hosseini,et al.  Intelligent water drops algorithm: A new optimization method for solving the multiple knapsack problem , 2008, Int. J. Intell. Comput. Cybern..

[66]  Carlos Cotta,et al.  Memetic algorithms and memetic computing optimization: A literature review , 2012, Swarm Evol. Comput..

[67]  Carmen L. T. Borges,et al.  Optimal distributed generation allocation for reliability, losses, and voltage improvement , 2006 .

[68]  J.O.P. Pinto,et al.  Genetic algorithm based system identification and PID tuning for optimum adaptive control , 2005, Proceedings, 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics..

[69]  Intan Zaurah Mat Darus,et al.  PID controller tuning using evolutionary algorithms , 2012 .

[70]  S. C. Choube,et al.  Distributed generation planning using differential evolution accounting voltage stability consideration , 2012 .

[71]  Thai-Hoang Huynh,et al.  A modified shuffled frog leaping algorithm for optimal tuning of multivariable PID controllers , 2008, 2008 IEEE International Conference on Industrial Technology.

[72]  Fangxing Li,et al.  Coordinated Tuning of DFIG-Based Wind Turbines and Batteries Using Bacteria Foraging Technique for Maintaining Constant Grid Power Output , 2012, IEEE Systems Journal.

[73]  PenChen Chou,et al.  Design of PID Controllers Using Genetic Algorithms Approach for Low Damping, Slow Response Plants , 2004, ISNN.

[74]  Mohammad-R. Akbarzadeh-T,et al.  Magnetic-inspired optimization algorithms: Operators and structures , 2014 .

[75]  A. El Hajjaji,et al.  Wind energy conversion systems control using T-S fuzzy modeling , 2010, 18th Mediterranean Conference on Control and Automation, MED'10.

[76]  Amar Faiz Zainal Abidin,et al.  Magnetic Optimization Algorithm Approach For Travelling Salesman Problem , 2012 .

[77]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[78]  Xuefeng F. Yan,et al.  Chaos-genetic algorithms for optimizing the operating conditions based on RBF-PLS model , 2003, Comput. Chem. Eng..

[79]  Y. W. Wong,et al.  Thermal generator scheduling using hybrid genetic/simulated-annealing approach , 1995 .

[80]  Tong Heng Lee,et al.  On the design of multivariable PID controllers via LMI approach , 2002, Autom..

[81]  Janez Brest,et al.  Self-Adapting Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems , 2006, IEEE Transactions on Evolutionary Computation.

[82]  P. Chiradeja,et al.  Benefit of Distributed Generation: A Line Loss Reduction Analysis , 2005, 2005 IEEE/PES Transmission & Distribution Conference & Exposition: Asia and Pacific.

[83]  Kazem Zare,et al.  A solution to the generation scheduling problem in power systems with large-scale wind farms using MICA , 2014 .

[84]  M. Y. Hassan,et al.  Allocation and sizing of DG using Cuckoo Search algorithm , 2012, 2012 IEEE International Conference on Power and Energy (PECon).

[85]  R. C. Dugan,et al.  Issues for distributed generation in the US , 2002, 2002 IEEE Power Engineering Society Winter Meeting. Conference Proceedings (Cat. No.02CH37309).

[86]  M.H. Tayarani-N,et al.  Magnetic Optimization Algorithms a new synthesis , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[87]  C. Y. Chung,et al.  Coordinated Damping Control Design for DFIG-Based Wind Generation Considering Power Output Variation , 2012, IEEE Transactions on Power Systems.

[88]  K. Tomsovic,et al.  Placement of dispersed generation systems for reduced losses , 2000, Proceedings of the 33rd Annual Hawaii International Conference on System Sciences.

[89]  Mokhtar S. Bazaraa,et al.  Nonlinear Programming: Theory and Algorithms , 1993 .

[90]  Taher Niknam,et al.  Multi-objective stochastic distribution feeder reconfiguration problem considering hydrogen and thermal energy production by fuel cell power plants , 2012 .

[91]  Zafer Bingul A New PID Tuning Technique Using Differential Evolution for Unstable and Integrating Processes with Time Delay , 2004, ICONIP.

[92]  Sancho Salcedo-Sanz,et al.  Seeding evolutionary algorithms with heuristics for optimal wind turbines positioning in wind farms , 2011 .

[93]  C. Kongnam,et al.  A particle swarm optimization for wind energy control problem , 2010 .

[94]  Seyed Ali Arefifar,et al.  Optimal allocation of distributed generation and reactive sources considering tap positions of voltage regulators as control variables , 2007 .

[95]  Thommy Ekelund Modeling and Linear Quadratic Optimal Control of Wind Turbines , 1997 .

[96]  P. K. Chattopadhyay,et al.  Fast evolutionary programming techniques for short-term hydrothermal scheduling , 2003 .

[97]  Nikolaos V. Sahinidis,et al.  Derivative-free optimization: a review of algorithms and comparison of software implementations , 2013, J. Glob. Optim..

[98]  Hossein Nezamabadi-pour,et al.  GSA: A Gravitational Search Algorithm , 2009, Inf. Sci..

[99]  Ali Safa Sadiq,et al.  Magnetic Optimization Algorithm for training Multi Layer Perceptron , 2011, 2011 IEEE 3rd International Conference on Communication Software and Networks.

[100]  Lingfeng Wang,et al.  Reliability-Constrained Optimum Placement of Reclosers and Distributed Generators in Distribution Networks Using an Ant Colony System Algorithm , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[101]  G. Sheblé,et al.  Power generation operation and control — 2nd edition , 1996 .

[102]  Chandrasekhar Yammani,et al.  Multiobjective Optimization for Optimal Placement and Size of DG using Shuffled Frog Leaping Algorithm , 2012 .

[103]  Xin-She Yang,et al.  Engineering optimisation by cuckoo search , 2010 .

[104]  K. Ravi,et al.  Solving optimum power flow in dynamic environments to minimize tracking errors using dynamic bacterial foraging algorithm , 2013, 2013 International Conference on Advanced Computing and Communication Systems.

[105]  Z. Geem Music-Inspired Harmony Search Algorithm: Theory and Applications , 2009 .

[106]  Devender Singh,et al.  GA based Optimal Sizing and Placement of Distributed Generation for Loss Minimization , 2007 .

[107]  Zwe-Lee Gaing,et al.  Particle swarm optimization to solving the economic dispatch considering the generator constraints , 2003 .

[108]  Hamed Shah-Hosseini,et al.  The intelligent water drops algorithm: a nature-inspired swarm-based optimization algorithm , 2009, Int. J. Bio Inspired Comput..

[109]  Steven H. Strogatz,et al.  Nonlinear Dynamics and Chaos , 2024 .

[110]  W. El-khattam,et al.  Optimal investment planning for distributed generation in a competitive electricity market , 2004, IEEE Transactions on Power Systems.

[111]  R. Mínguez,et al.  Directional calibrated wind and wave reanalysis databases using instrumental data for optimal design of off-shore wind farms , 2011, OCEANS 2011 IEEE - Spain.

[112]  Iulian Munteanu,et al.  Optimization of variable speed wind power systems based on a LQG approach , 2005 .

[113]  Roberto Mínguez,et al.  Offshore wind farm layout optimization using mathematical programming techniques , 2013 .

[114]  M. Pipattanasomporn,et al.  Reliability benefits of distributed generation as a backup source , 2009, 2009 IEEE Power & Energy Society General Meeting.

[115]  Ranjit Roy,et al.  Economic load dispatch of a power system with wind energy using craziness based shuffled frog leaping algorithm , 2011, ISGT2011-India.

[116]  Dervis Karaboga,et al.  A modified Artificial Bee Colony algorithm for real-parameter optimization , 2012, Inf. Sci..

[117]  Fred W. Glover,et al.  A user's guide to tabu search , 1993, Ann. Oper. Res..

[118]  H. Duan,et al.  PID controller design based on Prey-Predator Pigeon-Inspired Optimization algorithm , 2014, 2014 IEEE International Conference on Mechatronics and Automation.

[119]  S. Rao Rayapudi An Intelligent Water Drop Algorithm for Solving Economic Load Dispatch Problem , 2011 .

[120]  P. Paliwal,et al.  A comprehensive survey of optimization techniques used for Distributed Generator siting and sizing , 2012, 2012 Proceedings of IEEE Southeastcon.

[121]  Hossein Nezamabadi-pour,et al.  Filter modeling using gravitational search algorithm , 2011, Eng. Appl. Artif. Intell..

[122]  Caro Lucas,et al.  Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic competition , 2007, 2007 IEEE Congress on Evolutionary Computation.

[123]  J. Yorke,et al.  Chaos: An Introduction to Dynamical Systems , 1997 .

[124]  Kalyan Veeramachaneni,et al.  Optimizing the Layout of 1000 Wind Turbines , 2011 .

[125]  Koffka Khan,et al.  An Intelligent Water Droplet-based Evaluation of Health Oriented Distance Learning , 2013 .

[126]  F. Glover HEURISTICS FOR INTEGER PROGRAMMING USING SURROGATE CONSTRAINTS , 1977 .

[127]  A. Ebenezer Jeyakumar,et al.  Hybrid PSO–SQP for economic dispatch with valve-point effect , 2004 .

[128]  Markus Wagner,et al.  A Fast and Effective Local Search Algorithm for Optimizing the Placement of Wind Turbines , 2012, ArXiv.

[129]  Hamed Shah-Hosseini,et al.  Optimization with the Nature-Inspired Intelligent Water Drops Algorithm , 2009 .

[130]  Garret N. Vanderplaats,et al.  Numerical Optimization Techniques for Engineering Design: With Applications , 1984 .

[131]  Jan K. Sykulski,et al.  Application of pattern search method to power system valve-point economic load dispatch , 2007 .

[132]  Bijaya Ketan Panigrahi,et al.  Adaptive particle swarm optimization approach for static and dynamic economic load dispatch , 2008 .

[133]  Ahlstrom,et al.  The future of wind forecasting and utility operations , 2005, IEEE Power and Energy Magazine.

[134]  R. Minguez,et al.  Component failure simulation tool for optimal electrical configuration and repair strategy design of off-shore wind farms , 2011, OCEANS 2011 IEEE - Spain.

[135]  Andrew Kusiak,et al.  Design of wind farm layout for maximum wind energy capture , 2010 .

[136]  D. Karaboga,et al.  On the performance of artificial bee colony (ABC) algorithm , 2008, Appl. Soft Comput..

[137]  N. Deeb,et al.  Simulated annealing in power systems , 1992, [Proceedings] 1992 IEEE International Conference on Systems, Man, and Cybernetics.

[138]  Haibin Duan,et al.  Pigeon-inspired optimization: a new swarm intelligence optimizer for air robot path planning , 2014, Int. J. Intell. Comput. Cybern..

[139]  Malabika Basu Artificial immune system for combined heat and power economic dispatch , 2012 .

[140]  Jiang Wu,et al.  Novel intelligent water drops optimization approach to single UCAV smooth trajectory planning , 2009 .

[141]  Thomas Stützle,et al.  Ant Colony Optimization and Swarm Intelligence, 6th International Conference, ANTS 2008, Brussels, Belgium, September 22-24, 2008. Proceedings , 2008, ANTS Conference.

[142]  Ling Wang,et al.  An effective differential harmony search algorithm for the solving non-convex economic load dispatch problems , 2013 .

[143]  Ruijun Dong,et al.  Differential Evolution Versus Particle Swarm Optimization for PID Controller Design , 2009, 2009 Fifth International Conference on Natural Computation.

[144]  M.-R. Haghifam,et al.  ACO Based Algorithm for Distributed Generation Sources Allocation and Sizing in Distribution Systems , 2007, 2007 IEEE Lausanne Power Tech.

[145]  Carlo Poloni,et al.  Optimization of wind turbine positioning in large windfarms by means of a genetic algorithm , 1994 .

[146]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[147]  S. C. Srivastava,et al.  PSO based placement of multiple wind DGs and capacitors utilizing probabilistic load flow model , 2014, Swarm Evol. Comput..

[148]  Serhat Duman,et al.  GRAVITATIONAL SEARCH ALGORITHM FOR ECONOMIC DISPATCH WITH VALVE-POINT EFFECTS , 2010 .

[149]  Mitra Basu,et al.  Artificial immune system for fixed head hydrothermal power system , 2011 .

[150]  Xiaoyi Che,et al.  Tuning PID control parameters on hydraulic servo control system based on differential evolution algorithm , 2010, 2010 2nd International Conference on Advanced Computer Control.

[151]  Jin-Sung Kim,et al.  Auto Tuning PID Controller based on Improved Genetic Algorithm for Reverse Osmosis Plant , 2008 .

[152]  Weerakorn Ongsakul,et al.  Cuckoo search algorithm for non-convex economic dispatch , 2013 .

[153]  Yue Yuan,et al.  Analysis of the environmental benefits of Distributed Generation , 2008, 2008 IEEE Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century.

[154]  R. Storn,et al.  On the usage of differential evolution for function optimization , 1996, Proceedings of North American Fuzzy Information Processing.

[155]  Francisco Jurado,et al.  A binary SFLA for probabilistic three-phase load flow in unbalanced distribution systems with technical constraints , 2013 .

[156]  Whei-Min Lin,et al.  A New Elman Neural Network-Based Control Algorithm for Adjustable-Pitch Variable-Speed Wind-Energy Conversion Systems , 2011, IEEE Transactions on Power Electronics.

[157]  Luciano Castillo,et al.  Unrestricted wind farm layout optimization (UWFLO): Investigating key factors influencing the maximum power generation , 2012 .

[158]  M. J. Balas,et al.  Non-Linear and Linear Model Based Controller Design for Variable-Speed Wind Turbines , 1999 .

[159]  Alagan Anpalagan,et al.  Optimization classification, algorithms and tools for renewable energy: A review , 2014 .

[160]  Abd Allah A. Mousa,et al.  Hybrid ant optimization system for multiobjective economic emission load dispatch problem under fuzziness , 2014, Swarm Evol. Comput..

[161]  James F. Manwell,et al.  Offshore Wind Farm Layout Optimization (OWFLO) Project: Preliminary Results , 2006 .

[162]  Antonio José Gil Mena,et al.  Optimal distributed generation location and size using a modified teaching–learning based optimization algorithm , 2013 .