Discovering relationships among dispersed repeats using spatial association rule mining

Address: 1Institute for Digital Biology, Mississippi State University, Mississippi State, MS 39762, USA, 2Department of Computer Science and Engineering, Mississippi State University, Mississippi State, MS 39762, USA, 3Mississippi Genome Exploration Laboratory, Mississippi State University, Mississippi State, MS 39762, USA and 4Department of Plant and Soil Sciences, Mississippi State University, Mississippi State, MS 39762, USA

[1]  J. Jurka,et al.  Repbase Update, a database of eukaryotic repetitive elements , 2005, Cytogenetic and Genome Research.

[2]  Pavel A. Pevzner,et al.  De novo identification of repeat families in large genomes , 2005, ISMB.

[3]  J. Bennetzen,et al.  A unified classification system for eukaryotic transposable elements , 2007, Nature Reviews Genetics.

[4]  Christian Biémont,et al.  Genetics: Junk DNA as an evolutionary force , 2006, Nature.

[5]  Steven Henikoff,et al.  Expansions of transgene repeats cause heterochromatin formation and gene silencing in Drosophila , 1994, Cell.

[6]  Tomasz Imielinski,et al.  Mining association rules between sets of items in large databases , 1993, SIGMOD Conference.

[7]  Casey M. Bergman,et al.  Discovering and detecting transposable elements in genome sequences , 2007, Briefings Bioinform..

[8]  John A. Hamilton,et al.  The TIGR Rice Genome Annotation Resource: improvements and new features , 2006, Nucleic Acids Res..

[9]  C. Robin Buell,et al.  The TIGR Plant Repeat Databases: a collective resource for the identification of repetitive sequences in plants , 2004, Nucleic Acids Res..

[10]  S. Bridges,et al.  Computational Approaches and Tools Used in Identification of Dispersed Repetitive DNA Sequences , 2008, Tropical Plant Biology.

[11]  S. Bridges,et al.  Empirical comparison of ab initio repeat finding programs , 2008, Nucleic acids research.

[12]  B. Mcclintock,et al.  The significance of responses of the genome to challenge. , 1984, Science.