Imaging single mammalian cells with a 1.5 T clinical MRI scanner

In the present work, we demonstrate that the steady‐state free precession (SSFP) imaging pulse sequence FIESTA (fast imaging employing steady state acquisition) used in conjunction with a custom‐built insertable gradient coil and customized RF coils can be used to detect individual SPIO‐labeled cells using a commonly available 1.5 T clinical MRI scanner. This work provides the first evidence that single‐cell tracking will be possible using clinical MRI scanners, opening up new possibilities for cell tracking and monitoring of cellular therapeutics in vivo in humans. Magn Reson Med 49:968–971, 2003. © 2003 Wiley‐Liss, Inc.

[1]  R Weissleder,et al.  Tumoral distribution of long-circulating dextran-coated iron oxide nanoparticles in a rodent model. , 2000, Radiology.

[2]  Susumu Mori,et al.  Magnetic resonance microscopy and histology of the CNS , 2002 .

[3]  R Weissleder,et al.  Normal T-cell response and in vivo magnetic resonance imaging of T cells loaded with HIV transactivator-peptide-derived superparamagnetic nanoparticles. , 2001, Journal of immunological methods.

[4]  B. Rutt,et al.  Constrained length minimum inductance gradient coil design , 1998, Magnetic resonance in medicine.

[5]  R. Weissleder,et al.  Human transferrin receptor gene as a marker gene for MR imaging. , 2001, Radiology.

[6]  B Quesson,et al.  In vivo macrophage activity imaging in the central nervous system detected by magnetic resonance , 1999, Magnetic resonance in medicine.

[7]  R. Weissleder,et al.  Ultrasmall superparamagnetic iron oxide: characterization of a new class of contrast agents for MR imaging. , 1990, Radiology.

[8]  Ralph Weissleder,et al.  Differential conjugation of tat peptide to superparamagnetic nanoparticles and its effect on cellular uptake. , 2002, Bioconjugate chemistry.

[9]  L. Hedlund,et al.  Morphologic phenotyping with MR microscopy: the visible mouse. , 2002, Radiology.

[10]  L W Hedlund,et al.  Histology by magnetic resonance microscopy. , 1993, Magnetic resonance quarterly.

[11]  B. Rutt,et al.  Application of the static dephasing regime theory to superparamagnetic iron‐oxide loaded cells , 2002, Magnetic resonance in medicine.

[12]  Donald S. Williams,et al.  Detection of single mammalian cells by high-resolution magnetic resonance imaging. , 1999, Biophysical journal.

[13]  R. Weissleder,et al.  MRI of insulitis in autoimmune diabetes , 2002, Magnetic resonance in medicine.

[14]  B. Künnecke,et al.  Monoclonal antibody‐coated magnetite particles as contrast agents in magnetic resonance imaging of tumors , 1989, Magnetic resonance in medicine.

[15]  Peter van Gelderen,et al.  Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells , 2001, Nature Biotechnology.

[16]  Ralph Weissleder,et al.  Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells , 2000, Nature Biotechnology.

[17]  J A Frank,et al.  Neurotransplantation of magnetically labeled oligodendrocyte progenitors: magnetic resonance tracking of cell migration and myelination. , 1999, Proceedings of the National Academy of Sciences of the United States of America.