Towards high power flip-chip long-wavelength semiconductor disk lasers

Optically pumped semiconductor disk lasers (SDLs) are presented with emphasis on wafer bonding InP-based active regions with GaAs-based distributed Bragg reflectors (DBRs) and reducing the number of required layer pairs in the DBR. The wafer bonding is performed at a relatively low temperature of 200 °C utilizing transparent intermediate bonding layers. The reflectivity of the semiconductor DBR section is enhanced by finishing the DBR with a thin low refractive index layer and a highly reflecting metal layer. Such a design enables considerably thinner mirror structures than the conventional design, where the semiconductor DBR is finished with mere metal layers. In addition, a 90 nm thick Al2O3 layer is shown to produce negligible increase in the thermal resistance of the SDL. Furthermore, a flip-chip SDL with a GaAs/AlAs-Al2O3-Al mirror is demonstrated with watt-level output power at the wavelength of 1.32 μm. The properties and future improvement issues for flip-chip SDLs emitting at 1.3–1.6 μm are also discussed.

[1]  Oleg G. Okhotnikov,et al.  Semiconductor Disk Lasers: Physics and Technology , 2010 .

[2]  James R. Lloyd,et al.  Copper metallization reliability , 1999 .

[3]  P. Enquist,et al.  Room temperature SiO2∕SiO2 covalent bonding , 2006 .

[4]  Emmi Kantola,et al.  High-efficiency 20 W yellow VECSEL. , 2014, Optics express.

[5]  G. Zydzik,et al.  Strong adhesion of vacuum‐evaporated gold to oxide or glass substrates , 1977 .

[6]  A. Mereuta,et al.  High performance wafer-fused semiconductor disk lasers emitting in the 1300 nm waveband. , 2014, Optics express.

[7]  Martin D. Dawson,et al.  Semiconductor disk lasers for the generation of visible and ultraviolet radiation , 2009 .

[8]  M. Reiche,et al.  The Role of Surface Chemistry in Bonding of Standard Silicon Wafers , 1997 .

[9]  Rajendra Singh,et al.  Wafer Direct Bonding: From Advanced Substrate Engineering to Future Applications in Micro/Nanoelectronics , 2006, Proceedings of the IEEE.

[10]  Jorg Hader,et al.  106 W continuous-wave output power from vertical-external-cavity surface-emitting laser , 2012 .

[11]  Andreas Stintz,et al.  High-power 1.25 µm InAs QD VECSEL based on resonant periodic gain structure , 2011, LASE.

[12]  U. Gösele,et al.  Wafer bonding of different III–V compound semiconductors by atomic hydrogen surface cleaning , 2001 .

[13]  Y. Fainman,et al.  Amorphous Al2O3 Shield for Thermal Management in Electrically Pumped Metallo-Dielectric Nanolasers , 2014, IEEE Journal of Quantum Electronics.

[14]  Manfred Reiche,et al.  Hydrophobic silicon wafer bonding , 1994 .

[15]  Avi Zadok,et al.  Self-assembled monolayer assisted bonding of Si and InP , 2012 .

[16]  U. Gösele,et al.  Semiconductor wafer bonding , 1998 .

[17]  I. Radu (Invited) In Memoriam Ulrich Gösele: Wafer Bonding à la Carte , 2010 .

[18]  M. Tavast,et al.  Low Temperature Gold-to-Gold Bonded Semiconductor Disk Laser , 2013, IEEE Photonics Technology Letters.

[19]  Taisuke Miura,et al.  Low-loss broadband semiconductor saturable absorber mirror for mode-locked Ti:sapphire lasers , 2000 .

[20]  Soohaeng Cho,et al.  Effect of the properties of an intracavity heat spreader on second harmonic generation in vertical-external-cavity surface-emitting laser , 2007 .

[21]  F. Rinaldi,et al.  Efficient Gallium–Arsenide Disk Laser , 2007, IEEE Journal of Quantum Electronics.

[22]  Erling Riis,et al.  Novel Gain Medium Design for Short-Wavelength Vertical-External-Cavity Surface-Emitting Laser , 2007, IEEE Journal of Quantum Electronics.

[23]  I. Sagnes,et al.  Thermal Management for High-Power Single-Frequency Tunable Diode-Pumped VECSEL Emitting in the Near- and Mid-IR , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[24]  R. Bedford,et al.  Analysis of high-reflectivity metal-dielectric mirrors for edge-emitting lasers. , 2004, Optics letters.

[25]  Tomi Jouhti,et al.  A 0.6W cW GaInNAs vertical external cavity surface-emitting laser at 1.32µm , 2004 .

[26]  Stephen J. Sweeney,et al.  The temperature dependence of 1.3- and 1.5-/spl mu/m compressively strained InGaAs(P) MQW semiconductor lasers , 1999 .

[27]  Q.-Y. Tong,et al.  Wafer Bonding and Layer Splitting for Microsystems , 1999 .

[28]  T. Sugaya,et al.  Broadband semiconductor saturable-absorber mirror for a self-starting mode-locked Cr:forsterite laser. , 1998, Optics letters.

[29]  Viorel Dragoi,et al.  Mechanisms for room temperature direct wafer bonding , 2013 .

[30]  P. Adamiec,et al.  High-Brightness Quantum Well Tapered Lasers , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[31]  H. Macleod,et al.  Thin-Film Optical Filters , 1969 .

[32]  Henryk Temkin,et al.  Vertical-cavity surface-emitting lasers : design, fabrication, characterization, and applications , 2001 .

[33]  Andreas Dr. Plößl,et al.  GaAs wafer bonding by atomic hydrogen surface cleaning , 1999 .

[34]  J. Oudar,et al.  High power single-longitudinal-mode OP-VECSEL at 1.55 lm with hybrid metal-metamorphic Bragg mirror , 2007 .

[35]  M. Weyers,et al.  High-power tensile-strained GaAsP-AlGaAs quantum-well lasers emitting between 715 and 790 nm , 1999 .

[36]  Soohaeng Cho,et al.  Enhancement of Pumping Efficiency in a Vertical-External-Cavity Surface-Emitting Laser , 2007, IEEE Photonics Technology Letters.

[37]  J. Bengtsson,et al.  Thermal management of optically pumped long-wavelength InP-based semiconductor disk lasers , 2005, IEEE Journal of Selected Topics in Quantum Electronics.

[38]  B. Roberds,et al.  Low temperature Si3N4 direct bonding , 1993 .

[39]  Alexei Sirbu,et al.  3 W of 650 nm red emission by frequency doubling of wafer-fused semiconductor disk laser. , 2010, Optics express.

[40]  Alexei Sirbu,et al.  1 W at 785 nm from a frequency-doubled wafer-fused semiconductor disk laser. , 2012, Optics express.

[41]  Tomi Leinonen,et al.  1180 nm VECSEL with output power beyond 20 W , 2013 .

[42]  Jean-Louis Oudar,et al.  Thermal conductance of laterally-wet-oxidised GaAs/AlxOy Bragg reflectors , 2006 .

[43]  J. Bengtsson,et al.  InP-based optically pumped VECSEL operating CW at 1550 nm , 2004, IEEE Photonics Technology Letters.

[44]  J. Bowers,et al.  Long-wavelength vertical-cavity lasers and amplifiers , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[45]  S. L. Yellen,et al.  20000 h InGaAs quantum well lasers , 1990 .

[46]  John C. Connolly,et al.  8 W continuous wave front‐facet power from broad‐waveguide Al‐free 980 nm diode lasers , 1996 .

[47]  Fan Zhang,et al.  On the Measurement of the Thermal Resistance of Vertical-External-Cavity Surface-Emitting Lasers (VECSELs) , 2012, IEEE Journal of Quantum Electronics.

[48]  David B. Janes,et al.  Gold surface with sub-nm roughness realized by evaporation on a molecular adhesion monolayer , 2006 .

[49]  Antti Rantamäki,et al.  High power semiconductor disk laser with a semiconductor-dielectric-metal compound mirror , 2014 .

[50]  T. Shi,et al.  UV surface exposure for low temperature hydrophilic silicon direct bonding , 2008 .

[51]  D. J. Twitchen,et al.  Control of surface and bulk crystalline quality in single crystal diamond grown by chemical vapour deposition , 2009 .

[52]  A. C. Bryce,et al.  Reprocessing of thermally oxidized aluminum arsenide (AlAs) in epitaxial multilayers without delamination , 2005 .

[53]  Juan Chilla,et al.  Recent advances in optically pumped semiconductor lasers , 2007, SPIE LASE.

[54]  Martin Strassner,et al.  High performance 1.55μm vertical external cavity surface emitting laser with broadband integrated dielectric-metal mirror , 2004 .

[55]  S. L. Vetter,et al.  Thermal Management of Near-Infrared Semiconductor Disk Lasers With AlGaAs Mirrors and Lattice (Mis)Matched Active Regions , 2012, IEEE Journal of Quantum Electronics.

[56]  Arnaud Garnache,et al.  Diode-pumped broadband vertical-external-cavity surface-emitting semiconductor laser applied to high-sensitivity intracavity absorption spectroscopy , 2000 .

[57]  Isabelle Sagnes,et al.  Thermal optimization of 1.55 μm OP-VECSEL with hybrid metal–metamorphic mirror for single-mode high power operation , 2008 .

[58]  R. Gutmann,et al.  Adhesive wafer bonding , 2006 .

[59]  Di Liang,et al.  Low-Temperature, Strong SiO2-SiO2 Covalent Wafer Bonding for III–V Compound Semiconductors-to-Silicon Photonic Integrated Circuits , 2008 .

[60]  Wolfgang Horn High power diode lasers for industrial applications , 2007 .

[61]  B. Kunert,et al.  VECSEL Optimization Using Microscopic Many-Body Physics , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[62]  O. Okhotnikov,et al.  Multi-Watt Semiconductor Disk Laser by Low Temperature Wafer Bonding , 2013, IEEE Photonics Technology Letters.

[63]  The Joining of Parallel Plates via Organic Monolayers: Chemical Reactions in a Spatially Confined System , 1999 .

[64]  W. Oldham,et al.  Reliability of copper metallization on silicon-dioxide , 1991, 1991 Proceedings Eighth International IEEE VLSI Multilevel Interconnection Conference.

[65]  A. Mereuta,et al.  High-power flip-chip semiconductor disk laser in the 1.3 μm wavelength band. , 2014, Optics letters.

[66]  M. Ettenberg,et al.  A new dielectric facet reflector for semiconductor lasers , 1978 .

[67]  Mary K. Hibbs-Brenner,et al.  Advances in Red VCSEL Technology , 2012 .

[68]  Martin Strassner,et al.  Single-frequency operation of a high-power, long-wavelength semiconductor disk laser. , 2005, Optics letters.

[69]  Jorg Hader,et al.  Influence of non-radiative carrier losses on pulsed and continuous VECSEL performance , 2012, Other Conferences.