Silicon Organic Hybrid TechnologyVAPlatformfor Practical Nonlinear Optics Prototype devices have demonstrated that efficient optical modulators made up of layers of silicon and organic material can be constructed at moderate cost.

A cost-effective route to build electrically as well as optically controlled modulators in silicon photonics is reviewed. The technology enables modulation at bit rates beyond 100 Gbit/s. This platform relies on the well-established silicon-based complementary metal-oxide-semiconductor processing technology for fabricating silicon-on-insulator (SOI) waveguides, while an organic cladding layer adds the required nonlinearity. The strength of this hybrid technology is discussed, and two key devices in communications are exemplarily regarded in more detail. The first device demon- strates demultiplexing of a 120 Gbit/s signal by means of four- wave mixing in a slot-waveguide that has been filled with a highly nonlinear � ð3Þ -organic material. The second device is a 100 Gbit/s/1 V electrooptic modulator based on a slow-light SOI photonic crystal covered with a � ð2Þ -nonlinear organic material.

[1]  Michal Lipson,et al.  An exercise in self control , 2007 .

[2]  K. Taira,et al.  Highly-nonlinear bismuth oxide-based glass fibers for all-optical signal processing , 2002, Optical Fiber Communication Conference and Exhibit.

[3]  C. Koos,et al.  Silicon-Organic Hybrid (SOH) devices for nonlinear optical signal processing , 2008, 2008 10th Anniversary International Conference on Transparent Optical Networks.

[4]  Oded Cohen,et al.  Mode-locked silicon evanescent lasers. , 2007, Optics express.

[5]  Larry R. Dalton,et al.  Nonlinear polymer-clad silicon slot waveguide modulator with a half wave voltage of 0.25 V , 2008 .

[6]  Juthika Basak,et al.  40 Gbit/s silicon optical modulator for highspeed applications , 2007 .

[7]  Raluca Dinu,et al.  Broadband electro-optic polymer modulators with high electro-optic activity and low poling induced optical loss , 2008 .

[8]  F. Diederich,et al.  All-optical high-speed signal processing with silicon–organic hybrid slot waveguides , 2009 .

[9]  Yurii A. Vlasov,et al.  Silicon photonics for next generation computing systems , 2008 .

[10]  Lukas Mutter,et al.  Linear and nonlinear optical properties of the organic crystal DSTMS , 2007 .

[11]  D. Van Thourhout,et al.  Compact Wavelength-Selective Functions in Silicon-on-Insulator Photonic Wires , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[12]  Shyqyri Haxha,et al.  Bandwidth estimation for ultra-high-speed lithium niobate modulators. , 2003, Applied optics.

[13]  F. Wise,et al.  Highly nonlinear As-S-Se glasses for all-optical switching. , 2002, Optics letters.

[14]  Hon Ki Tsang,et al.  Time dependent density of free carriers generated by two photon absorption in silicon waveguides , 2007 .

[15]  Ivan Biaggio,et al.  A High‐Optical Quality Supramolecular Assembly for Third‐Order Integrated Nonlinear Optics , 2008 .

[16]  H. Hamann,et al.  Active control of slow light on a chip with photonic crystal waveguides , 2005, Nature.

[17]  Larry R. Dalton,et al.  Introduction to Organic Electronic and Optoelectronic Materials and Devices (Optical Science and Engineering Series) , 2008 .

[18]  T. Shoji,et al.  Microphotonics devices based on silicon microfabrication technology , 2005, IEEE Journal of Selected Topics in Quantum Electronics.

[19]  M. Lipson,et al.  Signal regeneration using low-power four-wave mixing on silicon chip , 2008 .

[20]  Wolfgang Freude,et al.  100 Gbit/s / 1 V Optical Modulator with Slotted Slow-Light Polymer-Infiltrated Silicon Photonic Crystal , 2008 .

[21]  Ling Liao,et al.  Silicon Optical Modulator for High-speed Applications , 2007, 2007 4th IEEE International Conference on Group IV Photonics.

[22]  Hyundai Park,et al.  1310nm Silicon Evanescent Laser , 2007, 2007 4th IEEE International Conference on Group IV Photonics.

[23]  Wolfgang Freude,et al.  High-speed low-voltage electro-optic modulator with a polymer-infiltrated silicon photonic crystal waveguide. , 2008, Optics express.

[24]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[25]  Wolfgang Freude,et al.  Silicon-on-Insulator Modulators for Next-Generation 100 Gbit/s-Ethernet , 2007 .

[26]  Keren Bergman,et al.  Silicon Nano-Phoonic Interconnection Networks in Multicore Processor Systems , 2008 .

[27]  M D Pelusi,et al.  Long, low loss etched As(2)S(3) chalcogenide waveguides for all-optical signal regeneration. , 2007, Optics express.

[28]  C. Koos,et al.  Radiation Modes and Roughness Loss in High Index-Contrast Waveguides , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[29]  W. Freude,et al.  Microwave-Frequency Experiments Validate Optical Simulation Tools and Demonstrate Novel Dispersion-Tailored Photonic Crystal Waveguides , 2007, Journal of Lightwave Technology.

[30]  Paul D. Townsend,et al.  Waveguiding in spun films of soluble polydiacetylenes , 1988 .

[31]  M. Paniccia,et al.  Demonstration of wavelength conversion at 40 Gb/s data rate in silicon waveguides. , 2006, Optics express.

[32]  Jingdong Luo,et al.  Terahertz all-optical modulation in a silicon–polymer hybrid system , 2006, Nature materials.

[33]  C Koos,et al.  Nonlinear silicon-on-insulator waveguides for all-optical signal processing. , 2007, Optics express.

[34]  Tymon Barwicz,et al.  Hitless-Reconfigurable and Bandwidth-Scalable Silicon Photonic Circuits for Telecom and Interconnect Applications , 2008, OFC/NFOEC 2008 - 2008 Conference on Optical Fiber Communication/National Fiber Optic Engineers Conference.

[35]  Jurgen Michel,et al.  Impedance matching vertical optical waveguide couplers for dense high index contrast circuits. , 2008, Optics express.

[36]  T. Krauss,et al.  Systematic design of flat band slow light in photonic crystal waveguides. , 2008, Optics express.

[37]  Toshihiko Baba,et al.  Slow light in photonic crystals , 2008 .

[38]  K. Taira,et al.  Highly nonlinear bismuth oxide-based glass fibres for all-optical signal processing , 2002 .

[39]  I. Day,et al.  Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength , 2002 .

[40]  R. Norwood,et al.  Hybrid polymer/sol–gel waveguide modulators with exceptionally large electro–optic coefficients , 2007 .

[41]  J. Bowers,et al.  Electrically pumped hybrid AlGaInAs-silicon evanescent laser. , 2006, Optics express.

[42]  C. Koos,et al.  All-optical wavelength conversion at 42.7 Gbit/s in a 4 mm long silicon-organic hybrid waveguide , 2009, 2009 Conference on Optical Fiber Communication - incudes post deadline papers.

[43]  M. Lipson Guiding, modulating, and emitting light on Silicon-challenges and opportunities , 2005, Journal of Lightwave Technology.

[44]  P. Mamyshev All-optical data regeneration based on self-phase modulation effect , 1998, 24th European Conference on Optical Communication. ECOC '98 (IEEE Cat. No.98TH8398).

[45]  Wolfgang Freude,et al.  Highly-Nonlinear Silicon Photonics Slot Waveguide , 2008 .

[46]  H. Fetterman,et al.  Demonstration of 110 GHz electro-optic polymer modulators , 1997 .

[47]  Jacob Fage-Pedersen,et al.  Photonic crystal waveguides with semi-slow light and tailored dispersion properties. , 2006, Optics express.

[48]  Y. Vlasov,et al.  Raman amplification in ultrasmall silicon-on-insulator wire waveguides. , 2004, Optics express.

[49]  T. Baba,et al.  Very Compact Arrayed-Waveguide-Grating Demultiplexer Using Si Photonic Wire Waveguides , 2004 .

[50]  Thomas F. Krauss,et al.  Slow light for switching and nonlinear effects in SOI , 2008 .

[51]  Ivan Biaggio,et al.  A new class of organic donor-acceptor molecules with large third-order optical nonlinearities. , 2005, Chemical communications.

[52]  A. Fang Silicon evanescent lasers , 2008 .

[53]  C. Koos,et al.  Highly nonlinear silicon photonics slot waveguides without free carrier absorption related speed-limitations , 2008, 2008 34th European Conference on Optical Communication.

[54]  Philippe Regreny,et al.  A photonic interconnect layer on CMOS , 2007 .

[55]  Hyundai Park,et al.  A Hybrid AlGaInAs–Silicon Evanescent Amplifier , 2007, IEEE Photonics Technology Letters.