Sidon Sets in Groups and Induced Subgraphs of Cayley Graphs

Let S be a subset of a group G. We call S a Sidon subset of the first (second) kind, if for any x, y, z, w ∈ S of which at least 3 are different, xy ≠ zw (xy-1 ≠ zw-1, resp.). (For abelian groups, the two notions coincide.) If G has a Sidon subset of the second kind with n elements then every n-vertex graph is an induced subgraph of some Cayley graph of G. We prove that a sufficient condition for G to have a Sidon subset of order n (of either kind) is that (❘G❘ ⩾ cn3. For elementary Abelian groups of square order, ❘G❘ ⩾ n2 is sufficient. We prove that most graphs on n vertices are not induced subgraphs of any vertex transitive graph with We warn the reader that the sets considered in this paper are different from the Sidon sets Fourier analysts investigate.

[1]  Anne Penfold Street,et al.  Maximal sum-free sets in finite abelian groups , 1970, Bulletin of the Australian Mathematical Society.

[2]  B. Lindström Determination of two vectors from the sum , 1969 .

[3]  A. Stöhr,et al.  Gelöste und ungelöste Fragen über Basen der natürlichen Zahlenreihe. I. , 1955 .

[4]  S. Sidon Ein Satz über trigonometrische Polynome und seine Anwendung in der Theorie der Fourier-Reihen , 1932 .

[5]  P. Erdös,et al.  On a problem of sidon in additive number theory, and on some related problems , 1941 .

[6]  Paul Erdös Some Applications of Ramsey's Theorem to Additive Number Theory , 1980, Eur. J. Comb..

[7]  P. Erdös,et al.  Representation of Group Elements as Short Products , 1982 .

[8]  László Babai,et al.  Chromatic number and subgraphs of cayley graphs , 1978 .

[9]  László Babai An anti-Ramsey theorem , 1985, Graphs Comb..

[10]  A. Hajnal,et al.  Partition relations for cardinal numbers , 1965 .

[11]  E. Hewitt,et al.  Abstract Harmonic Analysis , 1963 .

[12]  Endre Szemerédi,et al.  Linear problems in combinatorial number theory , 1975 .

[13]  János Komlós,et al.  A Dense Infinite Sidon Sequence , 1981, Eur. J. Comb..

[14]  A. Stöhr,et al.  Gelöste und ungelöste Fragen über Basen der natürlichen Zahlenreihe. II. , 1955 .

[15]  H. P. Yap,et al.  Maximal Sum-Free Sets of Elements of Finite Groups , 1969 .

[16]  J. Singer A theorem in finite projective geometry and some applications to number theory , 1938 .

[17]  Joel H. Spencer What’s not inside a Cayley graph , 1983, Comb..

[18]  B. H. Neumann,et al.  A question of Babai on groups , 1975, Bulletin of the Australian Mathematical Society.

[19]  G. Higman,et al.  Enumerating p‐Groups. I: Inequalities , 1960 .

[20]  Joel H. Spencer,et al.  Turán's theorem for k-graphs , 1972, Discret. Math..

[21]  Chris D. Godsil,et al.  More odd graph theory , 1980, Discret. Math..

[22]  W. Imrich,et al.  Tournaments with given regular group , 1978 .

[23]  P. Erdös,et al.  A Partition Calculus in Set Theory , 1956 .

[24]  G. Higman,et al.  Enumerating p-Groups, II: Problems Whose Solution is PORC , 1960 .

[25]  G. Sabidussi Vertex-transitive graphs , 1964 .

[26]  W. Rudin,et al.  Fourier Analysis on Groups. , 1965 .

[27]  Edwin Hewitt,et al.  Abstract Harmonic Analysis: Volume 1 , 1963 .

[28]  László Babai,et al.  Infinite digraphs with given regular automorphism groups , 1978, J. Comb. Theory, Ser. B.

[29]  H. P. Yap Maximal sum-free sets in finite abelian groups, V , 1975, Bulletin of the Australian Mathematical Society.

[30]  P. Erdos,et al.  Old and new problems and results in combinatorial number theory , 1980 .