Efficient Moving Horizon State and Parameter Estimation for the Varicol SMB Process

Abstract Abstract In this paper, a moving horizon state and parameter estimation (MHE) scheme for the Varicol process is presented. The Varicol process is an extension of the Simulated Moving Bed (SMB) process that realizes non-integer column distributions over the separation zones by an asynchronous switching of the inlet and outlet ports (the ports are shifted individually). These additional degrees of freedom can be used to yield an improvement in economical performance compared to SMB operation. The proposed estimation scheme is based on a rigorous SMB model that incorporates rigorous chromatographic columns and port switching. The absence of model simplifications allows the extension of the estimation scheme to the more complex Varicol process. The goal of the estimation scheme is to reconstruct the full state of the system, i.e. the concentration profiles along all columns, and to identify critical model parameters in the presence of noisy measurements. The estimation is based on measurements of the concentrations of the components at the two outlet ports (which are asynchronously switched from one column to the next) and at one fixed location between two columns. The state estimation scheme utilizes a deterministic model within the prediction horizon. State noise is only considered in the state and in the parameters up to the beginning of the horizon. By applying a multiple-shooting method and a real-time iteration scheme for solving the resulting optimization problem, the computation times are reduced and the scheme can be applied online. A numerical simulation for an enantiomer separation system with nonlinear adsorption isotherm is presented.

[1]  S. Engell,et al.  Optimization of simulated moving bed and Varicol processes. , 2003, Journal of chromatography. A.

[2]  MORITZ DIEHL,et al.  A Real-Time Iteration Scheme for Nonlinear Optimization in Optimal Feedback Control , 2005, SIAM J. Control. Optim..

[3]  Johannes P. Schlöder,et al.  A real-time algorithm for moving horizon state and parameter estimation , 2011, Comput. Chem. Eng..

[4]  Henner Schmidt-Traub,et al.  Optimal design of batch and simulated moving bed chromatographic separation processes. , 2002, Journal of chromatography. A.

[5]  H. Bock Numerical Treatment of Inverse Problems in Chemical Reaction Kinetics , 1981 .

[6]  Hans Bock,et al.  Efficient moving horizon state and parameter estimation for SMB processes , 2009 .

[7]  G. Dünnebier,et al.  Modelling and simulation of nonlinear chromatographic separation processes: a comparison of different modelling approaches , 2000 .

[8]  Jay H. Lee,et al.  A moving horizon‐based approach for least‐squares estimation , 1996 .

[9]  S. Engell,et al.  Optimal Operation of Continuous Chromatographic Processes: Mathematical Optimization of the VARICOL Process , 2002 .

[10]  Moritz Diehl,et al.  Real-Time Optimization for Large Scale Nonlinear Processes , 2001 .

[11]  Johannes P. Schlöder,et al.  Schnelle Algorithmen für die Zustands- und Parameterschätzung auf bewegten Horizonten (Fast Algorithms for State and Parameter Estimation on Moving Horizons) , 2006, Autom..

[12]  Ernst Dieter Gilles,et al.  State and parameter estimation for adsorption columns by nonlinear distributed parameter state observers , 1994 .

[13]  Tingyue Gu,et al.  Mathematical Modeling and Scale-up of Liquid Chromatography , 1995 .

[14]  Ernst Dieter Gilles,et al.  Automatic control of the simulated moving bed process for C8 aromatics separation using asymptotically exact input/output-linearization , 1999 .

[15]  Jan Lunze,et al.  Modelling and state observation of Simulated Moving Bed processes , 2003, 2003 European Control Conference (ECC).

[16]  Mazen Alamir,et al.  Nonlinear receding-horizon state estimation for dispersive adsorption columns with nonlinear isotherm , 2003 .

[17]  Sebastian Engell,et al.  PARAMETER AND STATE ESTIMATION IN CHROMATOGRAPHIC SMB PROCESSES WITH INDIVIDUAL COLUMNS AND NONLINEAR ADSORPTION ISOTHERMS , 2006 .

[18]  M. Diehl,et al.  Real-time optimization and nonlinear model predictive control of processes governed by differential-algebraic equations , 2000 .