Comparative Metabolic Network Flux Analysis to Identify Differences in Cellular Metabolism.

Metabolic network flux analysis uses genome-scale metabolic reconstructions to integrate transcriptomics, proteomics, and/or metabolomics data to allow for comprehensive interpretation of genotype to metabolic phenotype relationships. The compilation of many Constraint-based model analysis methods into one MATLAB package, the COBRAtoolbox, has opened the possibility of using these methods to the many biologists with some knowledge of the commonly used statistical program, MATLAB. Here we outline the steps required to take a published genome-scale metabolic reconstruction and interrogate its consistency and biological feasibility. Subsequently, we demonstrate how mRNA expression data and metabolomics data, relating to one or more cell types or biological contexts, can be applied to constrain and generate metabolic models descriptive of metabolic flux phenotypes. Finally, we describe the comparison of the resulting models and model outputs with the aim of identifying metabolic biomarkers and changes in cellular metabolism.

[1]  Albertha J. M. Walhout,et al.  A Caenorhabditis elegans Genome-Scale Metabolic Network Model. , 2016, Cell systems.

[2]  I. Nookaew,et al.  Integration of clinical data with a genome-scale metabolic model of the human adipocyte , 2013, Molecular systems biology.

[3]  Adam M. Feist,et al.  The biomass objective function. , 2010, Current opinion in microbiology.

[4]  Bernhard O. Palsson,et al.  Escher: A Web Application for Building, Sharing, and Embedding Data-Rich Visualizations of Biological Pathways , 2015, PLoS Comput. Biol..

[5]  Alessandro Vullo,et al.  Ensembl core software resources: storage and programmatic access for DNA sequence and genome annotation , 2016, bioRxiv.

[6]  Meiyappan Lakshmanan,et al.  Unraveling the Light-Specific Metabolic and Regulatory Signatures of Rice through Combined in Silico Modeling and Multiomics Analysis1[OPEN] , 2015, Plant Physiology.

[7]  Chris J. Myers,et al.  The Systems Biology Markup Language (SBML): Language Specification for Level 3 Version 2 Core Release 2 , 2018, J. Integr. Bioinform..

[8]  Intawat Nookaew,et al.  The RAVEN Toolbox and Its Use for Generating a Genome-scale Metabolic Model for Penicillium chrysogenum , 2013, PLoS Comput. Biol..

[9]  Amina A. Qutub,et al.  Reconstruction of Tissue-Specific Metabolic Networks Using CORDA , 2016, PLoS Comput. Biol..

[10]  Jeffrey D Orth,et al.  What is flux balance analysis? , 2010, Nature Biotechnology.

[11]  A. Barrett Enzyme Nomenclature. Recommendations 1992 , 1995 .

[12]  Avlant Nilsson,et al.  Recon3D: A Resource Enabling A Three-Dimensional View of Gene Variation in Human Metabolism , 2018, Nature Biotechnology.

[13]  Yangyang Zhao,et al.  BioModels: ten-year anniversary , 2014, Nucleic Acids Res..

[14]  Kenli Li,et al.  iProX: an integrated proteome resource , 2018, Nucleic Acids Res..

[15]  Monica L. Mo,et al.  Global reconstruction of the human metabolic network based on genomic and bibliomic data , 2007, Proceedings of the National Academy of Sciences.

[16]  D. Machado,et al.  Fast automated reconstruction of genome-scale metabolic models for microbial species and communities , 2018, bioRxiv.

[17]  B. Palsson,et al.  Systems analysis of metabolism in platelet concentrates during storage in platelet additive solution. , 2018, The Biochemical journal.

[18]  Anne Richelle,et al.  Creation and analysis of biochemical constraint-based models using the COBRA Toolbox v.3.0 , 2019, Nature Protocols.

[19]  J. Nielsen,et al.  Stratification of Hepatocellular Carcinoma Patients Based on Acetate Utilization. , 2015, Cell reports.

[20]  Ronan M. T. Fleming,et al.  MetaboTools: A Comprehensive Toolbox for Analysis of Genome-Scale Metabolic Models , 2016, Front. Physiol..

[21]  Ronan M. T. Fleming,et al.  Quantitative assignment of reaction directionality in a multicompartmental human metabolic reconstruction. , 2012, Biophysical journal.

[22]  Christoph Steinbeck,et al.  MetaboLights—an open-access general-purpose repository for metabolomics studies and associated meta-data , 2012, Nucleic Acids Res..

[23]  Masaki Matsumoto,et al.  jPOSTrepo: an international standard data repository for proteomes , 2016, Nucleic Acids Res..

[24]  E. Ruppin,et al.  Computational reconstruction of tissue-specific metabolic models: application to human liver metabolism , 2010, Molecular systems biology.

[25]  Daniel Machado,et al.  Systematic Evaluation of Methods for Integration of Transcriptomic Data into Constraint-Based Models of Metabolism , 2014, PLoS Comput. Biol..

[26]  Natapol Pornputtapong,et al.  Reconstruction of Genome-Scale Active Metabolic Networks for 69 Human Cell Types and 16 Cancer Types Using INIT , 2012, PLoS Comput. Biol..

[27]  Johannes Griss,et al.  The Proteomics Identifications (PRIDE) database and associated tools: status in 2013 , 2012, Nucleic Acids Res..

[28]  Brad T. Sherman,et al.  DAVID: Database for Annotation, Visualization, and Integrated Discovery , 2003, Genome Biology.

[29]  Masato Kimura,et al.  NCBI’s Database of Genotypes and Phenotypes: dbGaP , 2013, Nucleic Acids Res..

[30]  Jake P. N. Hattwell,et al.  Systems biology analysis using a genome-scale metabolic model shows that phosphine triggers global metabolic suppression in a resistant strain of C. elegans , 2017, bioRxiv.

[31]  Piotr Gawron,et al.  The Virtual Metabolic Human database: integrating human and gut microbiome metabolism with nutrition and disease , 2018, bioRxiv.

[32]  Jing Zhang,et al.  Reconstruction and analysis of a genome-scale metabolic model of Methylovorus sp. MP688, a high-level pyrroloquinolone quinone producer , 2018, Biosyst..

[33]  Gregory D. Schuler,et al.  Database resources of the National Center for Biotechnology Information: update , 2004, Nucleic acids research.

[34]  Ronan M. T. Fleming,et al.  Consistent Estimation of Gibbs Energy Using Component Contributions , 2013, PLoS Comput. Biol..

[35]  Nikos Vlassis,et al.  Fast Reconstruction of Compact Context-Specific Metabolic Network Models , 2013, PLoS Comput. Biol..

[36]  Robert Petryszak,et al.  ArrayExpress update—simplifying data submissions , 2014, Nucleic Acids Res..

[37]  B. Palsson,et al.  Elimination of thermodynamically infeasible loops in steady-state metabolic models. , 2011, Biophysical journal.

[38]  Alexander Bockmayr,et al.  Fast thermodynamically constrained flux variability analysis , 2013, Bioinform..

[39]  G. Church,et al.  Analysis of optimality in natural and perturbed metabolic networks , 2002 .

[40]  Antje Chang,et al.  BRENDA in 2019: a European ELIXIR core data resource , 2018, Nucleic Acids Res..

[41]  M. Uhlén,et al.  Understanding the Representative Gut Microbiota Dysbiosis in Metformin-Treated Type 2 Diabetes Patients Using Genome-Scale Metabolic Modeling , 2018, Front. Physiol..

[42]  F. Edfors,et al.  Gene‐specific correlation of RNA and protein levels in human cells and tissues , 2016, Molecular systems biology.

[43]  Zoran Nikoloski,et al.  Computational Approaches to Design and Test Plant Synthetic Metabolic Pathways1[OPEN] , 2019, Plant Physiology.

[44]  Ronan M. T. Fleming,et al.  von Bertalanffy 1.0: a COBRA toolbox extension to thermodynamically constrain metabolic models , 2011, Bioinform..

[45]  S. Navani,et al.  The human protein atlas , 2011 .

[46]  Jason E. Stewart,et al.  Minimum information about a microarray experiment (MIAME)—toward standards for microarray data , 2001, Nature Genetics.

[47]  B. Palsson,et al.  A protocol for generating a high-quality genome-scale metabolic reconstruction , 2010 .

[48]  B. Palsson,et al.  Insight into human alveolar macrophage and M. tuberculosis interactions via metabolic reconstructions , 2010, Molecular systems biology.

[49]  Markus J. Herrgård,et al.  Integration of enzymatic data in Bacillus subtilis genome-scale metabolic model improves phenotype predictions and enables in silico design of poly-γ-glutamic acid production strains , 2019, Microbial Cell Factories.

[50]  Anne Richelle,et al.  A Systematic Evaluation of Methods for Tailoring Genome-Scale Metabolic Models. , 2017, Cell systems.

[51]  Nathan E. Lewis,et al.  Modeling Meets Metabolomics—The WormJam Consensus Model as Basis for Metabolic Studies in the Model Organism Caenorhabditis elegans , 2018, Front. Mol. Biosci..

[52]  Matteo Mori,et al.  Uniform Sampling of Steady States in Metabolic Networks: Heterogeneous Scales and Rounding , 2013, PloS one.

[53]  M. Huynen,et al.  optGpSampler: An Improved Tool for Uniformly Sampling the Solution-Space of Genome-Scale Metabolic Networks , 2014, PloS one.

[54]  Eytan Ruppin,et al.  iMAT: an integrative metabolic analysis tool , 2010, Bioinform..

[55]  Bernhard O. Palsson,et al.  A detailed genome-wide reconstruction of mouse metabolism based on human Recon 1 , 2010, BMC Systems Biology.

[56]  Philip Miller,et al.  BiGG Models: A platform for integrating, standardizing and sharing genome-scale models , 2015, Nucleic Acids Res..

[57]  Raffaella Casadei,et al.  An estimation of the number of cells in the human body , 2013, Annals of human biology.

[58]  T. Goosen,et al.  Quantitative Characterization of Major Hepatic UDP-Glucuronosyltransferase Enzymes in Human Liver Microsomes: Comparison of Two Proteomic Methods and Correlation with Catalytic Activity , 2017, Drug Metabolism and Disposition.

[59]  Adam P. Arkin,et al.  A Method to Constrain Genome-Scale Models with 13C Labeling Data , 2015, PLoS Comput. Biol..

[60]  Neil Swainston,et al.  Recon 2.2: from reconstruction to model of human metabolism , 2016, Metabolomics.

[61]  N. Price,et al.  Genome-scale modeling for metabolic engineering , 2015, Journal of Industrial Microbiology & Biotechnology.

[62]  Ines Thiele,et al.  Computationally efficient flux variability analysis , 2010, BMC Bioinformatics.

[63]  L. Quek,et al.  AraGEM, a Genome-Scale Reconstruction of the Primary Metabolic Network in Arabidopsis1[W] , 2009, Plant Physiology.

[64]  Bernhard O. Palsson,et al.  Technologies and Approaches to Elucidate and Model the Virulence Program of Salmonella , 2011, Front. Microbio..

[65]  Ronan M. T. Fleming,et al.  Generation of genome-scale metabolic reconstructions for 773 members of the human gut microbiota , 2016, Nature Biotechnology.

[66]  Arcadi Navarro,et al.  The European Genome-phenome Archive of human data consented for biomedical research , 2015, Nature Genetics.

[67]  K. Choudhary,et al.  Metabolic re-wiring of isogenic breast epithelial cell lines following epithelial to mesenchymal transition. , 2017, Cancer letters.

[68]  Jens Nielsen,et al.  The gut microbiota modulates host amino acid and glutathione metabolism in mice , 2015 .

[69]  Thomas Horn,et al.  GenomeRNAi: a database for cell-based and in vivo RNAi phenotypes, 2013 update , 2012, Nucleic Acids Res..

[70]  N. V. van Riel,et al.  A genome-scale metabolic network reconstruction of tomato (Solanum lycopersicum L.) and its application to photorespiratory metabolism. , 2016, The Plant journal : for cell and molecular biology.

[71]  Le Thi Hoai An,et al.  DC approximation approaches for sparse optimization , 2014, Eur. J. Oper. Res..

[72]  Christopher R. Myers,et al.  Multiscale Metabolic Modeling of C4 Plants: Connecting Nonlinear Genome-Scale Models to Leaf-Scale Metabolism in Developing Maize Leaves , 2015, PloS one.

[73]  Juan Antonio Vizcaíno,et al.  The ProteomeXchange consortium in 2017: supporting the cultural change in proteomics public data deposition , 2016, Nucleic Acids Res..

[74]  Jae Yong Ryu,et al.  Framework and resource for more than 11,000 gene-transcript-protein-reaction associations in human metabolism , 2017, Proceedings of the National Academy of Sciences.

[75]  N. V. van Riel,et al.  Flux Balance Analysis of Plant Metabolism: The Effect of Biomass Composition and Model Structure on Model Predictions , 2016, Front. Plant Sci..

[76]  Dennis B. Troup,et al.  NCBI GEO: archive for functional genomics data sets—10 years on , 2010, Nucleic Acids Res..

[77]  Andreas Zell,et al.  Path2Models: large-scale generation of computational models from biochemical pathway maps , 2013, BMC Systems Biology.

[78]  Bernhard O. Palsson,et al.  Context-Specific Metabolic Networks Are Consistent with Experiments , 2008, PLoS Comput. Biol..

[79]  Hao Wang,et al.  RAVEN 2.0: A versatile toolbox for metabolic network reconstruction and a case study on Streptomyces coelicolor , 2018, bioRxiv.

[80]  Ó. Rolfsson,et al.  Metabolic systems analysis of LPS induced endothelial dysfunction applied to sepsis patient stratification , 2018, Scientific Reports.

[81]  Byung-Gee Kim,et al.  Transcriptomics‐based strain optimization tool for designing secondary metabolite overproducing strains of Streptomyces coelicolor , 2016, Biotechnology and bioengineering.

[82]  Ronan M. T. Fleming,et al.  A community-driven global reconstruction of human metabolism , 2013, Nature Biotechnology.

[83]  Eytan Ruppin,et al.  Proteomics-Based Metabolic Modeling Reveals That Fatty Acid Oxidation (FAO) Controls Endothelial Cell (EC) Permeability* , 2015, Molecular & Cellular Proteomics.

[84]  C. Maranas,et al.  Zea mays iRS1563: A Comprehensive Genome-Scale Metabolic Reconstruction of Maize Metabolism , 2011, PloS one.

[85]  Jan Schellenberger,et al.  Use of Randomized Sampling for Analysis of Metabolic Networks* , 2009, Journal of Biological Chemistry.

[86]  Rob Jelier,et al.  WormJam: A consensus C. elegans Metabolic Reconstruction and Metabolomics Community and Workshop Series , 2017, Worm.

[87]  Nathan D. Price,et al.  Reconstruction of genome-scale metabolic models for 126 human tissues using mCADRE , 2012, BMC Systems Biology.

[88]  Zoran Nikoloski,et al.  Integration of large-scale data for extraction of integrated Arabidopsis root cell-type specific models , 2018, Scientific Reports.

[89]  Vassily Hatzimanikatis,et al.  pyTFA and matTFA: a Python package and a Matlab toolbox for Thermodynamics-based Flux Analysis , 2018, Bioinform..

[90]  Ronan M. T. Fleming,et al.  Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0 , 2007, Nature Protocols.

[91]  Ronan M. T. Fleming,et al.  fastGapFill: efficient gap filling in metabolic networks , 2014, Bioinform..

[92]  Brad T. Sherman,et al.  Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources , 2008, Nature Protocols.

[93]  Stefan Schuster,et al.  A Genome-Scale Database and Reconstruction of Caenorhabditis elegans Metabolism. , 2016, Cell systems.

[94]  Alan J. Robinson,et al.  MitoCore: a curated constraint-based model for simulating human central metabolism , 2017, bioRxiv.

[95]  E. Ruppin,et al.  Improved evidence-based genome-scale metabolic models for maize leaf, embryo, and endosperm , 2015, Front. Plant Sci..

[96]  Audrey Kauffmann,et al.  Importing ArrayExpress datasets into R/Bioconductor , 2009, Bioinform..

[97]  Joshua A. Lerman,et al.  COBRApy: COnstraints-Based Reconstruction and Analysis for Python , 2013, BMC Systems Biology.

[98]  Ronan M. T. Fleming,et al.  A variational principle for computing nonequilibrium fluxes and potentials in genome-scale biochemical networks. , 2011, Journal of theoretical biology.

[99]  Santosh S. Vempala,et al.  CHRR: coordinate hit-and-run with rounding for uniform sampling of constraint-based models , 2017, Bioinform..