Information-theoretically optimal sparse PCA
暂无分享,去创建一个
[1] R. Tibshirani,et al. Sparse Principal Component Analysis , 2006 .
[2] I. Johnstone,et al. Sparse Principal Components Analysis , 2009, 0901.4392.
[3] Shlomo Shamai,et al. Mutual information and minimum mean-square error in Gaussian channels , 2004, IEEE Transactions on Information Theory.
[4] Gou Hosoya,et al. 国際会議参加報告:2014 IEEE International Symposium on Information Theory , 2014 .
[5] A. Soshnikov,et al. On finite rank deformations of Wigner matrices , 2011, 1103.3731.
[6] M. Wainwright,et al. High-dimensional analysis of semidefinite relaxations for sparse principal components , 2008, 2008 IEEE International Symposium on Information Theory.
[7] Alexandre d'Aspremont,et al. Optimal Solutions for Sparse Principal Component Analysis , 2007, J. Mach. Learn. Res..
[8] Andrea Montanari,et al. Finding Hidden Cliques of Size $$\sqrt{N/e}$$N/e in Nearly Linear Time , 2013, Found. Comput. Math..
[9] I. Johnstone,et al. On Consistency and Sparsity for Principal Components Analysis in High Dimensions , 2009, Journal of the American Statistical Association.
[10] B. Nadler,et al. Do Semidefinite Relaxations Really Solve Sparse PCA , 2013 .
[11] Michael I. Jordan,et al. A Direct Formulation for Sparse Pca Using Semidefinite Programming , 2004, SIAM Rev..
[12] J. W. Silverstein,et al. Eigenvalues of large sample covariance matrices of spiked population models , 2004, math/0408165.
[13] Shlomo Shamai,et al. Estimation in Gaussian Noise: Properties of the Minimum Mean-Square Error , 2010, IEEE Transactions on Information Theory.
[14] Thomas M. Cover,et al. Elements of Information Theory , 2005 .
[15] Adel Javanmard,et al. State Evolution for General Approximate Message Passing Algorithms, with Applications to Spatial Coupling , 2012, ArXiv.
[16] Andrea Montanari,et al. Finding Hidden Cliques of Size \sqrt{N/e} in Nearly Linear Time , 2013, ArXiv.
[17] Sundeep Rangan,et al. Iterative estimation of constrained rank-one matrices in noise , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.
[18] Raj Rao Nadakuditi,et al. The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices , 2009, 0910.2120.
[19] János Komlós,et al. The eigenvalues of random symmetric matrices , 1981, Comb..
[20] Andrea Montanari,et al. Sparse PCA via Covariance Thresholding , 2013, J. Mach. Learn. Res..
[21] S. Péché,et al. Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices , 2004, math/0403022.
[22] Shai Avidan,et al. Spectral Bounds for Sparse PCA: Exact and Greedy Algorithms , 2005, NIPS.
[23] Jun Yin,et al. The Isotropic Semicircle Law and Deformation of Wigner Matrices , 2011, 1110.6449.