Space exploration with a solar sail coated by materials that undergo thermal desorption

Abstract For extrasolar space exploration it is suggested to use space environmental effects such as solar radiation heating to accelerate a solar sail coated by materials that undergo thermal desorption at a particular temperature. The developed approach allows the perihelion of the solar sail orbits to be determined based on the temperature requirement for the solar sail materials. Our study shows that the temperature of a solar sail increases as r − 2 / 5 when the heliocentric distance r decreases. The proposed sail has two coats of the materials that undergo desorption at different solar sail temperatures depending on the heliocentric distance. The first desorption occurs at the Earth orbit and provides the thrust needed to propel the solar sail toward the Sun. When the solar sail approaches the Sun, its temperature increases, and the second coat undergoes desorption at the perihelion of the heliocentric escape orbit. This provides a second thrust and boosts the solar sail to its escape velocity.

[1]  Roman Ya. Kezerashvili,et al.  Can solar sails be used to test fundamental physics , 2013 .

[2]  Gregory L. Matloff,et al.  Deep-space probes , 2000 .

[3]  G. Benford,et al.  Reducing solar sail escape times from Earth orbit using beamed energy , 2006 .

[4]  Roman Ya. Kezerashvili,et al.  Thickness requirement for solar sail foils , 2009 .

[5]  Roman Ya. Kezerashvili,et al.  Solar radiation pressure and deviations from Keplerian orbits , 2009, 0901.1606.

[6]  Slava G. Turyshev,et al.  Indication, from Pioneer 10 / 11, Galileo, and Ulysses data, of an apparent anomalous, weak, long range acceleration , 1998 .

[7]  Claudio Maccone,et al.  ASTROSAIL and SETISAIL: Two extrasolar system missions to the Sun's gravitational focuses , 1994 .

[8]  Les Johnson,et al.  Propulsion Options for Interstellar Exploration. , 2000 .

[9]  Giovanni Vulpetti,et al.  On the viability of The Interstellar Flight , 1999 .

[10]  M. Modest Radiative heat transfer , 1993 .

[11]  David M. Murphy,et al.  Scalable Solar-Sail Subsystem Design Concept , 2003 .

[12]  Slava G. Turyshev,et al.  Study of the anomalous acceleration of Pioneer 10 and 11 , 2001, gr-qc/0104064.

[13]  G. Vulpetti Reaching extra-solar-system targets via large post-perihelion lightness-jumping sailcraft , 2011 .

[14]  R. Kezerashvili,et al.  Escape trajectories of solar sails and general relativity , 2009, 0907.3336.

[15]  V. Eshleman,et al.  Gravitational Lens of the Sun: Its Potential for Observations and Communications over Interstellar Distances , 1979, Science.

[16]  A. Einstein LENS-LIKE ACTION OF A STAR BY THE DEVIATION OF LIGHT IN THE GRAVITATIONAL FIELD. , 1936, Science.

[17]  G. Benford,et al.  A technology validation mission to demonstrate acceleration of sails by thermal desorption of coatings , 2001 .

[18]  Colin R. McInnes,et al.  Solar Sailing: Technology, Dynamics and Mission Applications , 1999 .

[19]  M. V. Moghaddam,et al.  Transforming carbon nanotube forest from darkest absorber to reflective mirror , 2012 .

[20]  Hendrik Ulbricht,et al.  Thermal desorption of gases and solvents from graphite and carbon nanotube surfaces , 2006 .

[21]  E. Sparrow,et al.  Radiation Heat Transfer , 1978 .

[22]  Roman Ya. Kezerashvili,et al.  Bound orbits of solar sails and general relativity , 2009, 0903.3212.

[23]  R. Kezerashvili Solar Sail: Materials and Space Environmental Effects , 2013, 1307.7327.

[24]  P. Falkner,et al.  Interstellar Heliopause Probe. Design of a challenging mission to 200 AU , 2005 .

[25]  Jordan Ellis,et al.  Support for the thermal origin of the pioneer anomaly. , 2012, Physical review letters.