Compatibilization of All-Conjugated Polymer Blends for Organic Photovoltaics.

Compatibilization of an immiscible binary blend comprising a conjugated electron donor and a conjugated electron acceptor polymer with suitable electronic properties upon addition of a block copolymer (BCP) composed of the same building blocks is demonstrated. Efficient compatibilization during melt-annealing is feasible when the two polymers are immiscible in the melt, i.e. above the melting point of ∼250 °C of the semicrystalline donor polymer P3HT. To generate immiscibility at these high temperatures, the acceptor polymer PCDTBT is equipped with fluorinated side chains leading to an increased Flory-Huggins interaction parameter. Compatibilization in bulk and thin films is demonstrated, showing that the photovoltaic performance of pristine microphase separated and nanostructured BCPs can also be obtained for compatibilized blend films containing low contents of 10-20 wt % BCP. Thermodynamically stable domain sizes range between several tens of microns for pure blends and ∼10 nm for pure block copolymers. In addition to controlling domain size, the amount of block copolymer added dictates the ratio of edge-on and face-on P3HT crystals, with compatibilized films showing an increasing amount of face-on P3HT crystals with increasing amount of compatibilizer. This study demonstrates the prerequisites and benefits of compatibilizing all-conjugated semicrystalline polymer blends for organic photovoltaics.

[1]  M. Brinkmann,et al.  Highly Oriented and Crystalline Films of a Phenyl-Substituted Polythiophene Prepared by Epitaxy: Structural Model and Influence of Molecular Weight , 2016 .

[2]  Jianqi Zhang,et al.  All‐Polymer Solar Cells Based on Absorption‐Complementary Polymer Donor and Acceptor with High Power Conversion Efficiency of 8.27% , 2016, Advanced materials.

[3]  R. Friend,et al.  Enhancing Phase Separation and Photovoltaic Performance of All-Conjugated Donor–Acceptor Block Copolymers with Semifluorinated Alkyl Side Chains , 2015 .

[4]  Cheng Wang,et al.  Flexible, highly efficient all-polymer solar cells , 2015, Nature Communications.

[5]  Luping Yu,et al.  Recent Advances in Bulk Heterojunction Polymer Solar Cells. , 2015, Chemical reviews.

[6]  Samson A Jenekhe,et al.  7.7% Efficient All‐Polymer Solar Cells , 2015, Advanced materials.

[7]  Feng Liu,et al.  Fluoro‐Substituted n‐Type Conjugated Polymers for Additive‐Free All‐Polymer Bulk Heterojunction Solar Cells with High Power Conversion Efficiency of 6.71% , 2015, Advanced materials.

[8]  P. Müller‐Buschbaum The Active Layer Morphology of Organic Solar Cells Probed with Grazing Incidence Scattering Techniques , 2014, Advanced materials.

[9]  M. Sommer,et al.  Identifying Homocouplings as Critical Side Reactions in Direct Arylation Polycondensation. , 2014, ACS macro letters.

[10]  R. Friend,et al.  Structure formation in P3HT/F8TBT blends , 2014 .

[11]  R. Friend,et al.  Structure formation in P 3 HT / F 8 TBT blends † , 2014 .

[12]  Samson A Jenekhe,et al.  All-polymer solar cells with 3.3% efficiency based on naphthalene diimide-selenophene copolymer acceptor. , 2013, Journal of the American Chemical Society.

[13]  C. Hawker,et al.  : No Assembly Required : Recent Advances in Fully Conjugated Block Copolymers , 2013 .

[14]  S. Beaupré,et al.  PCDTBT: en route for low cost plastic solar cells , 2013 .

[15]  C. Singh,et al.  Correlation of charge transport with structural order in highly ordered melt-crystallized poly(3-hexylthiophene) thin films , 2013 .

[16]  M. Thelakkat,et al.  Phase Separation in the Melt and Confined Crystallization as the Key to Well-Ordered Microphase Separated Donor–Acceptor Block Copolymers , 2013 .

[17]  R. Friend,et al.  Crystallization-Induced 10-nm Structure Formation in P3HT/PCBM Blends , 2013 .

[18]  Antonio Facchetti,et al.  Polymer donor–polymer acceptor (all-polymer) solar cells , 2013 .

[19]  A. Hexemer,et al.  Conjugated block copolymer photovoltaics with near 3% efficiency through microphase separation. , 2013, Nano letters.

[20]  Erika Bicciocchi Donor-acceptor block copolymers for photovoltaic applications , 2013 .

[21]  Zhenan Bao,et al.  Manipulating the Morphology of P3HT–PCBM Bulk Heterojunction Blends with Solvent Vapor Annealing , 2012 .

[22]  Feng Liu,et al.  On the morphology of polymer‐based photovoltaics , 2012 .

[23]  H. Ohkita,et al.  Polymer/polymer blend solar cells improved by using high-molecular-weight fluorene-based copolymer as electron acceptor. , 2012, ACS applied materials & interfaces.

[24]  W. Huck,et al.  Synthesis, Purification, and Characterization of Well-Defined All-Conjugated Diblock Copolymers PF8TBT-b-P3HT , 2012 .

[25]  R. Friend,et al.  On the role of single regiodefects and polydispersity in regioregular poly(3-hexylthiophene): defect distribution, synthesis of defect-free chains, and a simple model for the determination of crystallinity. , 2012, Journal of the American Chemical Society.

[26]  M. Sommer,et al.  Solvent Additive Control of Morphology and Crystallization in Semiconducting Polymer Blends , 2012, Advanced materials.

[27]  Christopher R. McNeill,et al.  Morphology of all-polymer solar cells , 2012 .

[28]  Yang Yang,et al.  Polymer solar cells , 2012, Nature Photonics.

[29]  N. Greenham,et al.  Ternary photovoltaic blends incorporating an all-conjugated donor-acceptor diblock copolymer. , 2011, Nano letters.

[30]  K. Hashimoto,et al.  Dipole Layer Formation by Surface Segregation of Regioregular Poly(3-alkylthiophene) with Alternating Alkyl/Semifluoroalkyl Side Chains , 2011 .

[31]  P. Topham,et al.  Block copolymer strategies for solar cell technology , 2011 .

[32]  C. Singh,et al.  Morphology controlled open circuit voltage in polymer solar cells , 2011 .

[33]  Kazuhito Hashimoto,et al.  Tailoring organic heterojunction interfaces in bilayer polymer photovoltaic devices. , 2011, Nature materials.

[34]  Y. Kwon,et al.  Carbazole-Based Copolymers: Effects of Conjugation Breaks and Steric Hindrance , 2011 .

[35]  S. Darling,et al.  Polythiophene-block-polyfluorene and Polythiophene-block-poly(fluorene-co-benzothiadiazole): Insights into the Self-Assembly of All-Conjugated Block Copolymers , 2011 .

[36]  W. Huck,et al.  Formation of Well‐Ordered Heterojunctions in Polymer:PCBM Photovoltaic Devices , 2011 .

[37]  Brad H. Jones Polymeric Bicontinuous Microemulsions as Templates for Nanostructured Materials , 2011 .

[38]  Zhenan Bao,et al.  Effects of Thermal Annealing Upon the Morphology of Polymer–Fullerene Blends , 2010 .

[39]  R. Segalman,et al.  Block Copolymers for Organic Optoelectronics , 2009 .

[40]  Neil C. Greenham,et al.  Conjugated‐Polymer Blends for Optoelectronics , 2009 .

[41]  A. Chiche,et al.  Controlled solvent vapour annealing for polymer electronics , 2009 .

[42]  Fosong Wang,et al.  Monodisperse co-oligomer approach toward nanostructured films with alternating donor-acceptor lamellae. , 2009, Journal of the American Chemical Society.

[43]  S. Haque,et al.  Charge separation and recombination in self-organizing nanostructured donor–acceptor block copolymer films , 2009 .

[44]  Nelson E. Coates,et al.  Bulk heterojunction solar cells with internal quantum efficiency approaching 100 , 2009 .

[45]  Jarvist M. Frost,et al.  Binary Organic Photovoltaic Blends: A Simple Rationale for Optimum Compositions , 2008 .

[46]  U. Scherf,et al.  All-conjugated block copolymers. , 2008, Accounts of chemical research.

[47]  A J Heeger,et al.  Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. , 2007, Nature materials.

[48]  M. Thelakkat,et al.  Microphase‐Separated Donor–Acceptor Diblock Copolymers: Influence of HOMO Energy Levels and Morphology on Polymer Solar Cells , 2007 .

[49]  M. Leclerc,et al.  Synthesis and Thermoelectric Properties of Polycarbazole, Polyindolocarbazole, and Polydiindolocarbazole Derivatives , 2007 .

[50]  G. Hadziioannou,et al.  Novel Brush-Type Copolymers Bearing Thiophene Backbone and Side Chain Quinoline Blocks. Synthesis and Their Use as a Compatibilizer in Thiophene−Quinoline Polymer Blends , 2007 .

[51]  Niyazi Serdar Sariciftci,et al.  Morphology of polymer/fullerene bulk heterojunction solar cells , 2006 .

[52]  Xiong Gong,et al.  Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology , 2005 .

[53]  C. Macosko,et al.  Block copolymer compatibilization of cocontinuous polymer blends , 2005 .

[54]  L. Leibler,et al.  Block copolymers in tomorrow's plastics , 2005, Nature materials.

[55]  L. Utracki Compatibilization of Polymer Blends , 2002 .

[56]  A. Ryan Designer polymer blends , 2002, Nature materials.

[57]  Richard H. Friend,et al.  Photovoltaic Performance and Morphology of Polyfluorene Blends: A Combined Microscopic and Photovoltaic Investigation , 2001 .

[58]  C. Brabec,et al.  2.5% efficient organic plastic solar cells , 2001 .

[59]  H. Ade,et al.  Confinement-induced miscibility in polymer blends , 1999, Nature.

[60]  Robert S. Loewe,et al.  A Simple Method to Prepare Head‐to‐Tail Coupled, Regioregular Poly(3‐alkylthiophenes) Using Grignard Metathesis , 1999 .

[61]  U. Steiner,et al.  Structure formation via polymer demixing in spin-cast films , 1997 .

[62]  Richard H. Friend,et al.  An improved experimental determination of external photoluminescence quantum efficiency , 1997 .