CdS Quantum Dots Sensitized TiO2 Sandwich Type Photoelectrochemical Solar Cells

For the first time, we report highly stable US quantum dots sensitized TiO2 sandwich type photoelectrochemical solar cells. A unique combination of a sensitized electrode and a polysulfide electrolyte has provided the most stable solar cell with the highest IPCE of approximately 70%.

[1]  D. Balding,et al.  HLA Sequence Polymorphism and the Origin of Humans , 2006 .

[2]  Qing Shen,et al.  Photoacoustic and Photoelectrochemical Characterization of CdSe Quantum Dots Grafted onto Fluorine-Doped Tin Oxide (FTO) Substrate , 2005 .

[3]  Hironori Arakawa,et al.  Quantitative Analysis of Light-Harvesting Efficiency and Electron-Transfer Yield in Ruthenium-Dye-Sensitized Nanocrystalline TiO2 Solar Cells , 2002 .

[4]  Jeffrey L. Blackburn,et al.  Electron Transfer Dynamics in Quantum Dot/Titanium Dioxide Composites Formed by in Situ Chemical Bath Deposition , 2003 .

[5]  G. Konstantatos,et al.  Solution-processed PbS quantum dot infrared photodetectors and photovoltaics , 2005, Nature materials.

[6]  Rocío Bayón,et al.  Nanostructured Photovoltaic Cell of the Type Titanium Dioxide, Cadmium Sulfide Thin Coating, and Copper Thiocyanate Showing High Quantum Efficiency , 2006 .

[7]  Horst Weller,et al.  Quantum-Sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 Particles as Sensitizers for Various Nanoporous Wide-Bandgap Semiconductors , 1994 .

[8]  Brian A. Gregg,et al.  Interfacial Recombination Processes in Dye-Sensitized Solar Cells and Methods To Passivate the Interfaces , 2001 .

[9]  Tetsu Tatsuma,et al.  Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. , 2005, Journal of the American Chemical Society.

[10]  R. Schaller,et al.  Seven excitons at a cost of one: redefining the limits for conversion efficiency of photons into charge carriers. , 2006, Nano letters.

[11]  Anders Hagfeldt,et al.  Light-Induced Redox Reactions in Nanocrystalline Systems , 1995 .

[12]  Arthur J. Nozik,et al.  Photosensitization of nanoporous TiO2 electrodes with InP quantum dots , 1998 .

[13]  Akihiko Kudo,et al.  Spectral sensitization of a TiO2 semiconductor electrode by CdS microcrystals and its photoelectrochemical properties , 1993 .

[14]  Michael Grätzel,et al.  Subpicosecond interfacial charge separation in dye-sensitized nanocrystalline titanium dioxide films , 1996 .

[15]  A. Ellis,et al.  Optical to electrical energy conversion. Characterization of cadmium sulfide and cadmium selenide based photoelectrochemical cells. [Conversion mechanisms and efficiencies] , 1976 .

[16]  Udo Bach,et al.  Quantum dot sensitization of organic-inorganic hybrid solar cells , 2002 .

[17]  H. Gerischer,et al.  Photodecomposition of Semiconductors – A Thermodynamic Approach. A Citation-Classic Commentary on the Stability of semiconductor electrodes against photodecomposition , 1977 .

[18]  A. Henglein,et al.  Photochemistry of colloidal semiconductors. Onset of light absorption as a function of size of extremely small CdS particles , 1986 .

[19]  A. Heller,et al.  Semiconductor liquid junction solar cells based on anodic sulphide films , 1976, Nature.

[20]  Gary Hodes,et al.  A thin-film polycrystalline photoelectrochemical cell with 8% solar conversion efficiency , 1980, Nature.

[21]  R. Tenne,et al.  High efficiency n‐Cd(Se,Te)/S=photoelectrochemical cell resulting from solution chemistry control , 1985 .

[22]  Vaidyanathan Subramanian,et al.  Quantum dot solar cells. harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films. , 2006, Journal of the American Chemical Society.

[23]  Arthur J. Nozik,et al.  Physical Chemistry of Semiconductor−Liquid Interfaces , 1996 .

[24]  D. Riley,et al.  Photosensitization of nanocrystalline TiO2 by self-assembled layers of CdS quantum dots. , 2002, Chemical communications.

[25]  Martin A. Green,et al.  Third generation photovoltaics: solar cells for 2020 and beyond , 2002 .

[26]  Reshef Tenne,et al.  On the kinetics of charge transfer between an illuminated CdSe electrode and polysulphide electrolyte , 1989 .

[27]  Xiaomei Lu,et al.  SENSITIZATION OF NANOCRYSTALLINE TIO2 ELECTRODE WITH QUANTUM SIZED CDSE AND ZNTCPC MOLECULES , 1997 .

[28]  A. Nozik,et al.  Exciton Multiplication and Relaxation Dynamics in Quantum Dots: Applications to Ultra-High Efficiency Solar Photon Conversion , 2005, 2006 IEEE 4th World Conference on Photovoltaic Energy Conference.

[29]  M. Beard,et al.  PbTe colloidal nanocrystals: synthesis, characterization, and multiple exciton generation. , 2006, Journal of the American Chemical Society.