Surfactant directed self-assembly of size-tunable mesoporous titanium dioxide microspheres and their

[1]  F. Kong,et al.  Nanocomposite gel electrolyte with large enhanced charge transport properties of an I3−/I− redox couple for quasi-solid-state dye-sensitized solar cells , 2007 .

[2]  Qiang Cai,et al.  Dilute solution routes to various controllable morphologies of MCM-41 silica with a basic medium , 2001 .

[3]  Kurt D. Benkstein,et al.  Influence of the percolation network geometry on electron transport in dye-sensitized titanium dioxide solar cells , 2003 .

[4]  Nam-Gyu Park,et al.  Formation of Highly Efficient Dye‐Sensitized Solar Cells by Hierarchical Pore Generation with Nanoporous TiO2 Spheres , 2009 .

[5]  M. Antonietti,et al.  Self‐Assembled Metal Oxide Bilayer Films with “Single‐Crystalline” Overlayer Mesopore Structure , 2007 .

[6]  Influence of the network geometry on electron transport in nanoparticle networks , 2003 .

[7]  Frank Lenzmann,et al.  A Solid-State Dye-Sensitized Solar Cell Fabricated with Pressure-Treated P25−TiO2 and CuSCN: Analysis of Pore Filling and IV Characteristics , 2002 .

[8]  Chongmu Lee,et al.  Size-dependent light-scattering effects of nanoporous TiO2 spheres in dye-sensitized solar cells , 2011 .

[9]  Hitoshi Kusama,et al.  TiO2 band shift by nitrogen-containing heterocycles in dye-sensitized solar cells: a periodic density functional theory study. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[10]  G. Cao,et al.  Effect of an Ultrathin TiO2 Layer Coated on Submicrometer‐Sized ZnO Nanocrystallite Aggregates by Atomic Layer Deposition on the Performance of Dye‐Sensitized Solar Cells , 2010, Advanced materials.

[11]  M. Antonietti,et al.  Highly crystalline cubic mesoporous TiO₂ with 10-nm pore diameter made with a new block copolymer template , 2004 .

[12]  Guozhong Cao,et al.  Aggregation of ZnO nanocrystallites for high conversion efficiency in dye-sensitized solar cells. , 2008, Angewandte Chemie.

[13]  H. Bowen,et al.  High-purity, monodisperse TiO2 powders by hydrolysis of titanium tetraethoxide. 1. Synthesis and physical properties , 1985 .

[14]  Guozhong Cao,et al.  Hierarchically Structured ZnO Film for Dye‐Sensitized Solar Cells with Enhanced Energy Conversion Efficiency , 2007 .

[15]  Valery Shklover,et al.  Nanocrystalline titanium oxide electrodes for photovoltaic applications , 2005 .

[16]  C. Grimes,et al.  Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis details and applications. , 2008, Nano letters.

[17]  Hironori Arakawa,et al.  Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell , 2004 .

[18]  Jianqi Li,et al.  Particle-Size-Dependent Distribution of Carboxylate Adsorption Sites on TiO2 Nanoparticle Surfaces: Insights into the Surface Modification of Nanostructured TiO2 Electrodes , 2004 .

[19]  Michael Grätzel,et al.  Charge collection and pore filling in solid-state dye-sensitized solar cells , 2008, Nanotechnology.

[20]  Xiaogang Peng,et al.  Kinetics of II-VI and III-V Colloidal Semiconductor Nanocrystal Growth: “Focusing” of Size Distributions , 1998 .

[21]  J. M. Nicol,et al.  Cooperative organization of inorganic-surfactant and biomimetic assemblies , 1995, Science.

[22]  B. Jönsson Surfactants and Polymers in Aqueous Solution , 1998 .

[23]  Jin Zhai,et al.  Improved stability quasi-solid-state dye-sensitized solar cell based on polyether framework gel electrolytes , 2006 .

[24]  Fuzhi Huang,et al.  Dye-sensitized solar cells employing a single film of mesoporous TiO2 beads achieve power conversion efficiencies over 10%. , 2010, ACS nano.

[25]  Kai Zhu,et al.  Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. , 2007, Nano letters.

[26]  Georg Maret,et al.  Synthesis and Characterization of Porous and Nonporous Monodisperse Colloidal TiO2 Particles. , 2004 .

[27]  Fuzhi Huang,et al.  Synthesis of monodisperse mesoporous titania beads with controllable diameter, high surface areas, and variable pore diameters (14-23 nm). , 2010, Journal of the American Chemical Society.

[28]  V. Lamer,et al.  Theory, Production and Mechanism of Formation of Monodispersed Hydrosols , 1950 .

[29]  Jihuai Wu,et al.  A Novel Thermosetting Gel Electrolyte for Stable Quasi‐Solid‐State Dye‐Sensitized Solar Cells , 2007 .

[30]  A. J. Frank,et al.  Removing structural disorder from oriented TiO2 nanotube arrays: reducing the dimensionality of transport and recombination in dye-sensitized solar cells. , 2007, Nano letters.

[31]  P. Falaras,et al.  Enhanced efficiency in solid-state dye-sensitized solar cells based on fractal nanostructured TiO2 thin films. , 2008, Small.

[32]  Guozhong Cao,et al.  Polydisperse Aggregates of ZnO Nanocrystallites: A Method for Energy‐Conversion‐Efficiency Enhancement in Dye‐Sensitized Solar Cells , 2008 .

[33]  Takayuki Kitamura,et al.  Influence of TiO2 Nanoparticle Size on Electron Diffusion and Recombination in Dye-Sensitized TiO2 Solar Cells , 2003 .

[34]  Chenmin Liu,et al.  Synthesis of angstrom-scale anatase titania atomic wires. , 2009, ACS nano.

[35]  Fuzhi Huang,et al.  Mesoporous Anatase TiO2 Beads with High Surface Areas and Controllable Pore Sizes: A Superior Candidate for High‐Performance Dye‐Sensitized Solar Cells , 2009 .

[36]  Michael Dürr,et al.  On the origin of increased open circuit voltage of dye-sensitized solar cells using 4-tert-butyl pyridine as additive to the electrolyte , 2006 .

[37]  Craig A Grimes,et al.  Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells. , 2009, Nature nanotechnology.

[38]  Dongsheng Xu,et al.  Controlling synthesis of well-crystallized mesoporous TiO2 microspheres with ultrahigh surface area for high-performance dye-sensitized solar cells , 2010 .

[39]  Eric A. Schiff,et al.  Ambipolar Diffusion of Photocarriers in Electrolyte-Filled, Nanoporous TiO2† , 2000 .

[40]  Fuzhi Huang,et al.  Dual‐Function Scattering Layer of Submicrometer‐Sized Mesoporous TiO2 Beads for High‐Efficiency Dye‐Sensitized Solar Cells , 2010 .

[41]  W. Lee,et al.  Low-temperature formation of efficient dye-sensitized electrodes employing nanoporous TiO2 spheres , 2010 .

[42]  The electrically conductive function of high-molecular weight poly(ethylene oxide) in polymer gel electrolytes used for dye-sensitized solar cells. , 2009, Physical chemistry chemical physics : PCCP.

[43]  Wei Chen,et al.  High-efficiency dye-sensitized solar cells based on the composite photoanodes of SnO2 nanoparticles/ZnO nanotetrapods. , 2010, The journal of physical chemistry. A.

[44]  C. Sanchez,et al.  Hydrolysis and Condensation Reactions of Transition Metal Alkoxides: Calorimetric Study and Evaluation of the Extent of Reaction , 1998 .

[45]  Craig A Grimes,et al.  High-efficiency Förster resonance energy transfer in solid-state dye sensitized solar cells. , 2010, Nano letters.