Nonlinear Multidimensional Data Projection and Visualisation

Multidimensional data projection and visualisation are becoming increasingly important and have found wide applications in many fields such as decision support, bioinformatics and web/document organisation. Various methods and algorithms have been proposed as either nonparametric or semiparametric approaches. This paper provides an overview of the subject and reviews some recent developments. Relationships among various key methods such as Sammon mapping, Neuroscale, principal curve/surface, SOM, GTM and ViSOM are analysed and their advantages and limitations are highlighted in the context of nonlinear principal component analysis and independent component analysis.

[1]  T. Kohonen Self-Organized Formation of Correct Feature Maps , 1982 .

[2]  Hujun Yin,et al.  Data visualisation and manifold mapping using the ViSOM , 2002, Neural Networks.

[3]  Richard C. T. Lee,et al.  A Triangulation Method for the Sequential Mapping of Points from N-Space to Two-Space , 1977, IEEE Transactions on Computers.

[4]  P. Törönen,et al.  Analysis of gene expression data using self‐organizing maps , 1999, FEBS letters.

[5]  Bernhard Schölkopf,et al.  Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.

[6]  Hujun Yin,et al.  Interpolating self-organising map (iSOM) , 1999 .

[7]  Robert P. W. Duin,et al.  Sammon's mapping using neural networks: A comparison , 1997, Pattern Recognit. Lett..

[8]  T. Kohonen,et al.  Exploratory Data Analysis by the Self-Organizing Map: Structures of Welfare and Poverty in the World , 1996 .

[9]  Christian Jutten,et al.  Source separation in post-nonlinear mixtures , 1999, IEEE Trans. Signal Process..

[10]  Te-Won Lee,et al.  Independent Component Analysis , 1998, Springer US.

[11]  Trevor F. Cox,et al.  Metric multidimensional scaling , 2000 .

[12]  Helge J. Ritter,et al.  Neural computation and self-organizing maps - an introduction , 1992, Computation and neural systems series.

[13]  Erkki Oja,et al.  Independent Component Analysis , 2001 .

[14]  Vladimir Cherkassky,et al.  Self-Organization as an Iterative Kernel Smoothing Process , 1995, Neural Computation.

[15]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[16]  Terrence J. Sejnowski,et al.  Unsupervised Classification with Non-Gaussian Mixture Models Using ICA , 1998, NIPS.

[17]  Adam Krzyzak,et al.  A Polygonal Line Algorithm for Constructing Principal Curves , 1998, NIPS.

[18]  D.,et al.  ICE FLOE IDENTIFICATION IN SATELLITE IMAGES USING MATHEMATICAL MORPHOLOGY AND CLUSTERING ABOUT PRINCIPAL CURVES , .

[19]  Michael E. Tipping,et al.  Feed-forward neural networks and topographic mappings for exploratory data analysis , 1996, Neural Computing & Applications.

[20]  Shun-ichi Amari,et al.  Learned parametric mixture based ICA algorithm , 1998, Neurocomputing.

[21]  Christopher K. I. Williams,et al.  Magnification factors for the SOM and GTM algorithms , 1997 .

[22]  John W. Sammon,et al.  A Nonlinear Mapping for Data Structure Analysis , 1969, IEEE Transactions on Computers.

[23]  Aapo Hyvärinen,et al.  Nonlinear independent component analysis: Existence and uniqueness results , 1999, Neural Networks.

[24]  Hujun Yin,et al.  Image denoising using self-organizing map-based nonlinear independent component analysis , 2002, Neural Networks.

[25]  Juha Karhunen,et al.  Generalizations of principal component analysis, optimization problems, and neural networks , 1995, Neural Networks.

[26]  Joydeep Ghosh,et al.  A Unified Model for Probabilistic Principal Surfaces , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[27]  Gilles Burel,et al.  Blind separation of sources: A nonlinear neural algorithm , 1992, Neural Networks.

[28]  Jacek M. Zurada,et al.  Nonlinear Blind Source Separation Using a Radial Basis Function Network , 2001 .

[29]  Anil K. Jain,et al.  Artificial neural networks for feature extraction and multivariate data projection , 1995, IEEE Trans. Neural Networks.

[30]  Mark A. Girolami,et al.  Self-Organising Neural Networks: Independent Component Analysis and Blind Source Separation , 1999 .

[31]  Gautam Biswas,et al.  Evaluation of Projection Algorithms , 1981, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[32]  Hujun Yin,et al.  ViSOM - a novel method for multivariate data projection and structure visualization , 2002, IEEE Trans. Neural Networks.

[33]  Erkki Oja,et al.  Neural Networks, Principal Components, and Subspaces , 1989, Int. J. Neural Syst..

[34]  Anil K. Jain,et al.  A nonlinear projection method based on Kohonen's topology preserving maps , 1992, IEEE Trans. Neural Networks.

[35]  Juha Karhunen,et al.  A Maximum Likelihood Approach to Nonlinear Blind Source Separation , 1997, ICANN.

[36]  Teuvo Kohonen,et al.  In: Self-organising Maps , 1995 .

[37]  R. Tibshirani,et al.  Adaptive Principal Surfaces , 1994 .

[38]  R. Tibshirani Principal curves revisited , 1992 .

[39]  Hujun Yin,et al.  Bayesian self-organising map for Gaussian mixtures , 2001 .

[40]  S. Raghavan,et al.  A visualization model based on adjacency data , 2002, Decision Support Systems.

[41]  Juha Karhunen,et al.  Local Independent Component Analysis Using Clustering , 1999 .

[42]  Michael Herrmann,et al.  Perspectives and limitations of self-organizing maps , 1996 .

[43]  Terence D. Sanger,et al.  Optimal unsupervised learning in a single-layer linear feedforward neural network , 1989, Neural Networks.

[44]  Christopher M. Bishop,et al.  GTM: The Generative Topographic Mapping , 1998, Neural Computation.

[45]  Nei I Doherty Neural Computation and Self-Organising Maps: An Introduction , 1994 .

[46]  A. Hyvärinen,et al.  Nonlinear Blind Source Separation by Self-Organizing Maps , 1996 .

[47]  Te-Won Lee,et al.  Blind source separation of nonlinear mixing models , 1997, Neural Networks for Signal Processing VII. Proceedings of the 1997 IEEE Signal Processing Society Workshop.

[48]  Ata Kabán,et al.  A Combined Latent Class and Trait Model for the Analysis and Visualization of Discrete Data , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[49]  Hujun Yin Visualisation Induced SOM (ViSOM) , 2001, WSOM.

[50]  E. C. Malthouse,et al.  Limitations of nonlinear PCA as performed with generic neural networks , 1998, IEEE Trans. Neural Networks.

[51]  A. Ultsch,et al.  Self-Organizing Neural Networks for Visualisation and Classification , 1993 .

[52]  Brian D. Ripley,et al.  Pattern Recognition and Neural Networks , 1996 .

[53]  Hujun Yin,et al.  Self-Organising Maps for Hierarchical Tree View Document Clustering Using Contextual Information , 2002, IDEAL.

[54]  Timo Honkela,et al.  WEBSOM - Self-organizing maps of document collections , 1998, Neurocomputing.

[55]  T. Kohonen,et al.  Workshop on Self-Organizing Maps (WSOM'97), Espoo, Finland, June 4-6, 1997 , 1997 .

[56]  M. Kramer Nonlinear principal component analysis using autoassociative neural networks , 1991 .

[57]  Erkki Oja Helsinki PCA, ICA, and Nonlinear Hebbian Learning , 1995 .

[58]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[59]  T. Kohonen Self-organized formation of topology correct feature maps , 1982 .