An adaptive two-dimensional wavelet-vaguelette algorithm for the computation of flame balls

This paper is concerned with the numerical simulation of two-dimensional flame balls. We describe a Galerkin-type discretization in an adaptive basis of orthogonal wavelets. The solution is represented by means of a reduced basis being adapted in each time step. This algorithm is applied to compute the evolution of circular and elliptic thermodiffusive flames. In particular, we study the influence of the Lewis number, the strength of radiative losses and of the initial radius. The results show different scenarios. We find repeated splitting of the flame ball which is studied in some detail, extinction after excessive growth and also obtain quasi-steady flame balls.

[1]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[2]  J. Buckmaster,et al.  Absolute flammability limits and flame-balls , 1994 .

[3]  Incomplete combustion in nonadiabatic premixed gas flames. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[4]  P. Ronney Near-limit flame structures at low Lewis number , 1990 .

[5]  I. J. Schoenberg,et al.  Cardinal interpolation and spline functions , 1969 .

[6]  P. Ronney,et al.  A theoretical study of propagation and extinction of nonsteady spherical flame fronts , 1989 .

[7]  Valérie Perrier,et al.  Towards a method for solving partial differential equations by using wavelet packet bases , 1994 .

[8]  Kai Schneider,et al.  Wavelets in Physics: Turbulence analysis, modelling and computing using wavelets , 1999 .

[9]  A Multiscale Wavelet Solver with O(n) Complexity , 1995 .

[10]  J. Buckmaster,et al.  The three-dimensional dynamics of flame-balls , 1992 .

[11]  J. Buckmaster,et al.  The structure and stability of nonadiabatic flame balls , 1990 .

[12]  S. Weeratunga,et al.  The Stability and Structure of Flame-Bubbles , 1983 .

[13]  Jianzhong Wang,et al.  Adaptive multiresolution collocation methods for initial boundary value problems of nonlinear PDEs , 1996 .

[14]  B. Deshaies,et al.  On the Initiation of a Spherical Flame Kernel , 1984 .

[15]  J. Buckmaster The Structure and Stability of Laminar Flames , 1993 .

[16]  R. DeVore,et al.  Compression of wavelet decompositions , 1992 .

[17]  Y. Maday,et al.  ADAPTATIVITE DYNAMIQUE SUR BASES D'ONDELETTES POUR L'APPROXIMATION D'EQUATIONS AUX DERIVEES PARTIELLES , 1991 .

[18]  W. Dahmen Wavelet and multiscale methods for operator equations , 1997, Acta Numerica.

[19]  J. Buckmaster,et al.  Analytical and Numerical Modeling of Flame-Balls in Hydrogen-Air Mixtures , 1993 .

[20]  A. Dervieux,et al.  On some adaptive numerical approaches of thin flame propagation problems , 1989 .

[21]  Francis E. Fendell,et al.  Asymptotic Analysis of Laminar Flame Propagation for General Lewis Numbers , 1970 .

[22]  Charles K. Chui,et al.  An Introduction to Wavelets , 1992 .

[23]  Jochen Fröhlich,et al.  An Adaptive Wavelet-Vaguelette Algorithm for the Solution of PDEs , 1997 .

[24]  J. Buckmaster,et al.  The structure and stability of nonadiabatic flame balls. II, Effects of far-field losses , 1991 .

[25]  G. Sivashinsky,et al.  Self-fragmentation of nonadiabatic cellular flames , 1997 .

[26]  P. Haldenwang,et al.  A local extinction of the thermo-diffusive premixed flame at low Lewis number , 1989 .

[27]  Wim Sweldens,et al.  An Overview of Wavelet Based Multiresolution Analyses , 1994, SIAM Rev..

[28]  Jochen Fröhlich,et al.  Numerical Simulation of Decaying Turbulence in an Adaptive Wavelet Basis , 1996 .

[29]  C. Basdevant,et al.  La décomposition en ondelettes périodiques, un outil pour l'analyse de champs inhomogènes: théorie et algorithmes , 1989 .

[30]  Jochen Fröhlich,et al.  An adaptive Wavelet-Vaguelette Algorithm for the Solution of Nonlinear PDEs , 1995 .

[31]  D. Donoho Unconditional Bases Are Optimal Bases for Data Compression and for Statistical Estimation , 1993 .

[32]  Jochen Fröhlich,et al.  An Adaptive Wavelet Galerkin Algorithm for one and two Dimensional Flame Computations , 1993 .

[33]  P. Ronney,et al.  Numerical simulation of diluent effects on flame balls , 1998 .

[34]  I. Weinreich,et al.  Wavelet-Galerkin methods: An adapted biorthogonal wavelet basis , 1993 .