The Delaunay Triangulation Maximizes the Mean Inradius
暂无分享,去创建一个
[1] D. Pedoe,et al. Japanese Temple Geometry Problems. , 1991 .
[2] Samuel Rippa,et al. Minimal roughness property of the Delaunay triangulation , 1990, Comput. Aided Geom. Des..
[3] David Wells,et al. The Penguin Dictionary of Curious and Interesting Geometry , 1992 .
[4] David Eppstein,et al. MESH GENERATION AND OPTIMAL TRIANGULATION , 1992 .
[5] I. Babuska,et al. ON THE ANGLE CONDITION IN THE FINITE ELEMENT METHOD , 1976 .
[6] Franz Aurenhammer,et al. Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.
[7] V. Leitáo,et al. Computer Graphics: Principles and Practice , 1995 .
[8] Robert E. Barnhill,et al. Representation and Approximation of Surfaces , 1977 .
[9] Larry L. Schumaker,et al. Triangulation Methods , 1987, Topics in Multivariate Approximation.
[10] V. T. Rajan,et al. Optimality of the Delaunay triangulation in Rd , 1991, SCG '91.
[11] S. Omohundro. The Delaunay Triangulation and Function Learning , 1990 .
[12] P. L. Powar,et al. Minimal roughness property of the Delaunay triangulation: a shorter approach , 1992, Comput. Aided Geom. Des..
[13] Robin Sibson,et al. Locally Equiangular Triangulations , 1978, Comput. J..
[14] R. B. Simpson,et al. On optimal interpolation triangle incidences , 1989 .