Effect of grain size and texture on pseudoelasticity in Cu–Al–Mn-based shape memory wire

Abstract The effect of the relative grain size d/D (d: grain size, D: wire diameter) on stress–strain characteristics was investigated in Cu–Al–Mn-based shape memory alloy (SMA) wires. The yield stress (σy), the work-hardening rate after yielding (dσPE/de) and the stress hysteresis (Δσ) in the wires with a random texture decrease with increasing d/D. The transformation strain (eTS) and the maximum pseudoelastic strain ( e PE MAX ) increase with increasing d/D. The effect of grain size on pseudoelastic behaviors can be clarified from the volume fraction of three-dimensionally constrained grains and the σy, dσPE/de and Δσ increase proportionally with increasing (1 − (d/D))2 while the eTS decreases proportionally with increasing (1 − (d/D))2. Consequently, the effect of grain size on the pseudoelastic behaviors can be expressed using the Taylor and inverse Schmid factors. The σy and the eTS for wires with a 〈1 1 0〉 fiber texture are larger and smaller than those for wires with a random texture, respectively.

[1]  K. Ishida,et al.  Thermoelastic martensite and shape memory effect in ductile Cu-Al-Mn alloys , 1996 .

[2]  Shuichi Miyazaki,et al.  Development of Shape Memory Alloys , 1989 .

[3]  E. B. Hawbolt,et al.  Transformational elasticity in a polycrystalline Cu-Zn-Sn alloy , 1975 .

[4]  J. Wert,et al.  Effect of grain size on the observed pseudoelastic behavior of a Cu-Zn-Al shape memory alloy , 1997 .

[5]  C. M. Wayman,et al.  The shape memory effect and pseudoelasticity in polycrystalline Cu-Zn alloys , 1976 .

[6]  C. M. Wayman,et al.  Shape-Memory Materials , 2018 .

[7]  Toshihiro Omori,et al.  Effect of grain size and texture on superelasticity of Cu-AI-Mn-based shape memory alloys , 2003 .

[8]  N. Ono,et al.  Pseudoelastic Deformation in a Polycrystalline Cu–Zn–Al Shape Memory Alloy , 1990 .

[9]  Petr Šittner,et al.  Anisotropy of martensitic transformations in modeling of shape memory alloy polycrystals , 2000 .

[10]  N. Ono,et al.  Plastic Deformation Governed by the Stress Induced Martensitic Transformation in Polycrystals , 1986 .

[11]  K. Bhattacharya,et al.  THE INFLUENCE OF TEXTURE ON THE SHAPE- MEMORY EFFECT IN POLYCRYSTALS , 1998 .

[12]  X. J. Liu,et al.  Phase Equilibria and Heusler Phase Stability in the Cu-Rich Portion of the Cu-Al-Mn System , 1998 .

[13]  J. Christian Deformation by moving interfaces , 1982 .

[14]  Erhard Hornbogen,et al.  The martensitic transformation in science and technology , 1989 .

[15]  L. C. Brown,et al.  The mechanical properties of grain refined β- cuaini strain-memory alloys , 1984 .

[16]  K. Ishida,et al.  Enhancement of superelasticity in Cu-Al-Mn-Ni shape-memory alloys by texture control , 2002 .

[17]  J. Hirsch,et al.  The Effect of Textures on Shape Memory Behaviour , 1991 .

[18]  L. C. Brown,et al.  The fatigue properties of grain refined β-Cu Al Ni strain-memory alloys , 1985 .

[19]  N. Ono,et al.  A Discussion on the Mechanical Properties of Shape Memory Alloys Based on a Polycrystal Model , 1989 .

[20]  K. Ishida,et al.  Two-Way Shape Memory Effect Induced by Bending Deformation in Ductile Cu-Al-Mn Alloys , 2002 .

[21]  T. W. Duerig,et al.  Engineering Aspects of Shape Memory Alloys , 1990 .

[22]  Jiangchao Wang,et al.  Anisotropy of the phase-transformation plasticity in textured CuZnAl shape-memory sheets , 2002 .

[23]  P. Donner,et al.  The Shape Memory Effect in Meltspun Ribbons , 1991 .

[24]  H. Hosoda,et al.  Texture of Ti–Ni rolled thin plates and sputter-deposited thin films , 2000 .