The growth efficiency of high-redshift black holes

The observational evidence that Super-Massive Black Holes (M 10 9 10 M ) are already in place less than 1Gyr after the Big Bang poses stringent time constraints on the growth efficiency of their seeds. Among proposed possibilities, the formation of massive ( 10 3 6 M ) seeds and/or the occurrence of super-Eddington ( _ M > _ MEdd) accretion episodes may contribute to the solution of this problem. In this work, using realistic initial conditions, we analytically and numerically investigate the accretion flow onto high-redshift (z 10) black holes to understand the physical requirements favoring rapid and efficient growth. Our model identifies a “feeding-dominated” accretion regime and a “feedback-limited” one, the latter being characterized by intermittent (duty cyclesD 10 5 6 M ) grow very rapidly as they are found in the feeding-dominated regime. In addition to the standard accretion model with a fixed matterenergy conversion factor ( = 0:1), we have also explored slim disk models ( < 0:04), which may ensure a continuous growth with _ M _ MEdd (up to 300 _ MEdd in our simulations). Under these conditions, outflows play a negligible role and a black hole can accrete 80% 100% of the gas mass of the host halo ( 10 7 M ) in 10Myr, while in feedbacklimited systems we predict that black holes can accrete only up to 15% of the available mass.

[1]  M. Volonteri,et al.  Shining in the dark: the spectral evolution of the first black holes , 2015, 1506.05299.

[2]  J. Lasota Black hole accretion discs , 2015, 1505.02172.

[3]  R. Teyssier,et al.  Black hole evolution – I. Supernova-regulated black hole growth , 2015, 1504.00018.

[4]  Xiaohui Fan,et al.  An ultraluminous quasar with a twelve-billion-solar-mass black hole at redshift 6.30 , 2015, Nature.

[5]  A. Ferrara,et al.  Simulating the growth of intermediate mass black holes , 2015, 1501.00989.

[6]  M. Begelman,et al.  Supermassive black hole formation at high redshifts via direct collapse in a cosmological context , 2014, 1412.2761.

[7]  J. Silk,et al.  THE CASE FOR SUPERCRITICAL ACCRETION ONTO MASSIVE BLACK HOLES AT HIGH REDSHIFT , 2014, 1401.3513.

[8]  J. Stone,et al.  A GLOBAL THREE-DIMENSIONAL RADIATION MAGNETO-HYDRODYNAMIC SIMULATION OF SUPER-EDDINGTON ACCRETION DISKS , 2014, 1410.0678.

[9]  T. Alexander,et al.  Rapid growth of seed black holes in the early universe by supra-exponential accretion , 2014, Science.

[10]  A. Ferrara,et al.  Initial mass function of intermediate-mass black hole seeds , 2014, 1406.6685.

[11]  P. Madau,et al.  SUPER-CRITICAL GROWTH OF MASSIVE BLACK HOLES FROM STELLAR-MASS SEEDS , 2014, 1402.6995.

[12]  Harvard,et al.  Three-dimensional general relativistic radiation magnetohydrodynamical simulation of super-Eddington accretion, using a new code HARMRAD with M1 closure , 2013, 1312.6127.

[13]  M. Begelman,et al.  HYPERACCRETION DURING TIDAL DISRUPTION EVENTS: WEAKLY BOUND DEBRIS ENVELOPES AND JETS , 2013, 1312.5314.

[14]  J. Niemeyer,et al.  Impact of baryonic streaming velocities on the formation of supermassive black holes via direct collapse , 2013, 1311.5866.

[15]  A. Tchekhovskoy,et al.  Numerical simulations of super-critical black hole accretion flows in general relativity , 2013, 1311.5900.

[16]  D. Sijacki,et al.  The environment of bright QSOs at z ∼ 6: star-forming galaxies and X-ray emission , 2013, 1307.5854.

[17]  W. Schmidt,et al.  The characteristic black hole mass resulting from direct collapse in the early Universe , 2013, 1309.1097.

[18]  M. Begelman,et al.  SUPERMASSIVE BLACK HOLE FORMATION AT HIGH REDSHIFTS VIA DIRECT COLLAPSE: PHYSICAL PROCESSES IN THE EARLY STAGE , 2013, 1304.1369.

[19]  W. Schmidt,et al.  Black hole formation in the early Universe , 2013, 1304.0962.

[20]  J. Silk,et al.  Blowing cold flows away: the impact of early AGN activity on the formation of a brightest cluster galaxy progenitor , 2012, 1206.5838.

[21]  M. Abramowicz,et al.  Foundations of Black Hole Accretion Disk Theory , 2011, Living reviews in relativity.

[22]  Z. Haiman The Formation of the First Massive Black Holes , 2012, 1203.6075.

[23]  J. Ostriker,et al.  Radiative transfer and radiative driving of outflows in active galactic nuclei and starbursts , 2012, 1203.6062.

[24]  A. Petri,et al.  Supermassive black hole ancestors , 2012, 1202.3141.

[25]  Chris L. Fryer,et al.  THE GROWTH OF THE STELLAR SEEDS OF SUPERMASSIVE BLACK HOLES , 2011, 1112.2726.

[26]  R. Klessen,et al.  THE FIRST GALAXIES: ASSEMBLY WITH BLACK HOLE FEEDBACK , 2011, 1111.6305.

[27]  KwangHo Park,et al.  ACCRETION ONTO BLACK HOLES FROM LARGE SCALES REGULATED BY RADIATIVE FEEDBACK. III. ENHANCED LUMINOSITY OF INTERMEDIATE-MASS BLACK HOLES MOVING AT SUPERSONIC SPEEDS , 2011, 1110.4634.

[28]  M. Begelman Radiatively inefficient accretion: breezes, winds and hyperaccretion , 2011, 1110.5356.

[29]  Richard G. McMahon,et al.  A luminous quasar at a redshift of z = 7.085 , 2011, Nature.

[30]  M. Davies,et al.  SUPERMASSIVE BLACK HOLE FORMATION VIA GAS ACCRETION IN NUCLEAR STELLAR CLUSTERS , 2011, 1106.5943.

[31]  J. Ostriker,et al.  FEEDBACK FROM CENTRAL BLACK HOLES IN ELLIPTICAL GALAXIES: TWO-DIMENSIONAL MODELS COMPARED TO ONE-DIMENSIONAL MODELS , 2010, 1007.3505.

[32]  Marta Volonteri,et al.  Formation of supermassive black holes , 2010, 1003.4404.

[33]  Z. Haiman,et al.  Supermassive black hole formation by direct collapse: keeping protogalactic gas H2 free in dark matter haloes with virial temperatures Tvir > rsim 104 K , 2009, 0906.4773.

[34]  A. R. King,et al.  Black Hole Outflows , 2009, 0911.1639.

[35]  A. Sa̧dowski SLIM DISKS AROUND KERR BLACK HOLES REVISITED , 2009, 0906.0355.

[36]  Bernadetta Devecchi,et al.  FORMATION OF THE FIRST NUCLEAR CLUSTERS AND MASSIVE BLACK HOLES AT HIGH REDSHIFT , 2008, 0810.1057.

[37]  S. Couch,et al.  ACCRETION ONTO “SEED” BLACK HOLES IN THE FIRST GALAXIES , 2008, 0809.2404.

[38]  P. Armitage,et al.  Quasi-stars: accreting black holes inside massive envelopes , 2007, 0711.4078.

[39]  T. D. Matteo,et al.  Direct Cosmological Simulations of the Growth of Black Holes and Galaxies , 2007, 0705.2269.

[40]  T. Abel,et al.  ACCRETION ONTO THE FIRST STELLAR-MASS BLACK HOLES , 2007, 0811.0820.

[41]  Cambridge,et al.  Warp diffusion in accretion discs: a numerical investigation , 2007, 0708.1124.

[42]  Jarrett L. Johnson,et al.  The aftermath of the first stars: massive black holes , 2006, astro-ph/0605691.

[43]  Cambridge,et al.  Supermassive black hole formation during the assembly of pre-galactic discs , 2006, astro-ph/0606159.

[44]  M. Rees,et al.  Formation of supermassive black holes by direct collapse in pre-galactic haloes , 2006, astro-ph/0602363.

[45]  J. Peacock,et al.  Simulations of the formation, evolution and clustering of galaxies and quasars , 2005, Nature.

[46]  M. Rees,et al.  Rapid Growth of High-Redshift Black Holes , 2005, astro-ph/0506040.

[47]  J. Brinkmann,et al.  A Survey of z > 5.7 Quasars in the Sloan Digital Sky Survey. IV. Discovery of Seven Additional Quasars , 2004, astro-ph/0405138.

[48]  A. Loeb,et al.  Formation of the First Supermassive Black Holes , 2002, astro-ph/0212400.

[49]  M. Mori,et al.  Does the Slim-Disk Model Correctly Consider Photon-trapping Effects? , 2002, astro-ph/0203425.

[50]  Martin J. Rees,et al.  ApJ, in press Preprint typeset using L ATEX style emulateapj v. 04/03/99 MASSIVE BLACK HOLES AS POPULATION III REMNANTS , 2001 .

[51]  S. Mineshige,et al.  Slim-Disk model for Soft X-Ray Excess and Variability of Narrow-Line Seyfert 1 Galaxies , 2000, astro-ph/0003017.

[52]  Roger D. Blandford,et al.  On the fate of gas accreting at a low rate on to a black hole , 1998, astro-ph/9809083.

[53]  Bernard F. Schutz,et al.  Living Reviews in Relativity: Making an Electronic Journal Live , 1997 .

[54]  J. Lasota,et al.  Slim Accretion Disks , 1988 .

[55]  B. Paczyński,et al.  A model of a thick disk with equatorial accretion , 1982 .

[56]  Mitchell C. Begelman,et al.  Black holes in radiation-dominated gas: an analogue of the Bondi accretion problem. , 1978 .

[57]  K. Thorne Disk-Accretion onto a Black Hole. II. Evolution of the Hole , 1974 .

[58]  H. Bondi,et al.  On spherically symmetrical accretion , 1952 .