Analytical expressions for Wiener indices of n-circumscribed peri-condensed benzenoid graphs

We have employed cut axes and vertex partitioning (I-partition) methods to obtain exact analytical expressions for Wiener indices of n-circumscribed peri-condensed benezenoid graphs as a function of n, the order of circumscribing. Such expressions have not been obtained before for nth order circumscribing of peri-condensed benzenoid graphs with the exception of n-Circum-coronene which becomes a honeycomb lattice as n goes to infinity. The Wiener indices of these n-circum peri-condensed benzenoids are found to be polynomials of degree 5. Such expressions can be critical in topological characterization of peri-condensed benzenoid sheets of any order of circumscribing. A number of examples are provided ranging from Circum-polyacenes, Circum-ovalenes, Circum-pyrenes to more complex Circum-peri-condensed graphs of wide ranging complexities.

[1]  Ivan Gutman,et al.  Wiener Numbers of Phenylenes: An Exact Result , 1997, J. Chem. Inf. Comput. Sci..

[2]  I. Gutman,et al.  Wiener Index of Trees: Theory and Applications , 2001 .

[3]  Victor Chepoi,et al.  The Wiener Index and the Szeged Index of Benzenoid Systems in Linear Time , 1997, J. Chem. Inf. Comput. Sci..

[4]  W. Malisch,et al.  Übergangsmetall-substituierte Phosphane, Arsane und Stibane, XXXIII. (Brommethyl)bis[(trimethylsilyl)methyl]arsan: Darstellung und Metallierung zu Komplexen mit η1 - oder η2-koordiniertem Arsinomethyl-Liganden , 1983 .

[5]  Peter E. John,et al.  Wiener index of zig-zag polyhex nanotubes , 2004 .

[6]  Peter E. John,et al.  Wiener index of armchair polyhex nanotubes , 2004 .

[7]  Jerry Ray Dias Valence-bond determination of diradical character of polycyclic aromatic hydrocarbons: from acenes to rectangular benzenoids. , 2013, The journal of physical chemistry. A.

[8]  The Wiener index of a new class of carbon nanojunctions , 2011 .

[9]  N. Trinajstic,et al.  On the three-dimensional wiener number , 1989 .

[10]  Sandi Klavzar,et al.  Wiener Number of Vertex-weighted Graphs and a Chemical Application , 1997, Discret. Appl. Math..

[11]  H. Miyoshi,et al.  Non-alternant non-benzenoid kekulenes: the birth of a new kekulene family. , 2015, Chemical Society reviews.

[12]  I. Gutman,et al.  Mathematical Concepts in Organic Chemistry , 1986 .

[13]  Alexandru T. Balaban,et al.  Graph theoretical characterization and computer generation of certain carcinogenic benzenoid hydrocarbons and identification of bay regions , 1980 .

[14]  Edgar M. Palmer Variations of the cell growth problem , 1972 .

[15]  Wiener indices of benzenoid hydrocarbons containing two linear polyacene fragments , 1998 .

[16]  Martin Baca,et al.  On topological indices of fullerenes , 2015, Appl. Math. Comput..

[17]  K. Balasubramanian Applications of Combinatorics and Graph Theory to Spectroscopy and Quantum Chemistry , 1985 .

[18]  Mohammad Amin Alipour,et al.  A Numerical Method for Computing the Wiener Index of One-Heptagonal Carbon Nanocone , 2009 .

[19]  Heping Zhang,et al.  None of the coronoid systems can be isometrically embedded into a hypercube , 2008, Discret. Appl. Math..

[20]  F. Harary,et al.  Chemical graphs—V : Enumeration and proposed nomenclature of benzenoid cata-condensed polycyclic aromatic hydrocarbons , 1968 .

[21]  Bharati Rajan,et al.  A New Approach to Compute Wiener Index , 2013 .

[22]  I. Gutman,et al.  Wiener Index of Hexagonal Systems , 2002 .

[23]  Jerry Ray Dias,et al.  Analytical study of superaromaticity in cycloarenes and related coronoid hydrocarbons. , 2013, The journal of physical chemistry. A.