Tuneable ion transport by electrically responsive membranes under electrical assistance

[1]  Shenmin Zhang,et al.  2D nanosheets seeding layer modulated covalent organic framework membranes for efficient desalination , 2022, Desalination.

[2]  Jun Zhao,et al.  Ultrafast seawater desalination with covalent organic framework membranes , 2022, Nature Sustainability.

[3]  M. Elimelech,et al.  Tailored design of nanofiltration membranes for water treatment based on synthesis-property-performance relationships. , 2021, Chemical Society reviews.

[4]  Jun Wang,et al.  Development and performance of stable PANI/MWNT conductive membrane for contaminants degradation and anti-fouling behavior , 2021, Separation and Purification Technology.

[5]  Haihui Wang,et al.  MXene‐Based Membranes for Separation Applications , 2021, Small Science.

[6]  R. Kaner,et al.  Conducting Polyaniline for Antifouling Ultrafiltration Membranes: Solutions and Challenges. , 2021, Nano letters.

[7]  Najmul Haque Barbhuiya,et al.  Synthesis, fabrication, and mechanism of action of electrically conductive membranes: a review , 2021 .

[8]  Jun Wang,et al.  The effects of electrophoresis, bubbles and electroosmosis for conductive membrane performance in the electro-filtration process , 2021 .

[9]  Gongpin Liu,et al.  Two-Dimensional-Material Membranes: Manipulating the Transport Pathway for Molecular Separation , 2021, Accounts of Materials Research.

[10]  Hongtao Yu,et al.  Electrokinetic Enhancement of Water Flux and Ion Rejection through Graphene Oxide/Carbon Nanotube Membrane. , 2020, Environmental science & technology.

[11]  Yanbiao Liu,et al.  Prospects of an Electroactive Carbon Nanotube Membrane toward Environmental Applications. , 2020, Accounts of chemical research.

[12]  J. Qu,et al.  Ultrathin water-stable metal-organic framework membranes for ion separation , 2020, Science Advances.

[13]  Zhi‐Kang Xu,et al.  Ultrathin metal/covalent-organic framework membranes towards ultimate separation. , 2019, Chemical Society reviews.

[14]  Li Li Xu,et al.  Flexible electro-responsive in-situ polymer acid doped polyaniline membranes for permeation enhancement and membrane fouling removal , 2019, Journal of Membrane Science.

[15]  Xiao-bo Zhu,et al.  Electroactive Membranes for Water Treatment: Enhanced Treatment Functionalities, Energy Considerations, and Future Challenges. , 2019, Accounts of chemical research.

[16]  S. Déon,et al.  Understanding the impact of poly(allylamine) plasma grafting on the filtration performances of a commercial polymeric membrane , 2019, Separation and Purification Technology.

[17]  Mengchen Zhang,et al.  Controllable ion transport by surface-charged graphene oxide membrane , 2019, Nature Communications.

[18]  Li Li Xu,et al.  Electrically responsive ultrafiltration polyaniline membrane to solve fouling under applied potential , 2019, Journal of Membrane Science.

[19]  Jun Wang,et al.  Development of polyaniline conductive membrane for electrically enhanced membrane fouling mitigation , 2019, Journal of Membrane Science.

[20]  Hongtao Yu,et al.  Improving Ion Rejection of Conductive Nanofiltration Membrane through Electrically Enhanced Surface Charge Density. , 2018, Environmental science & technology.

[21]  Huijuan Liu,et al.  Enhancement of the Donnan effect through capacitive ion increase using an electroconductive rGO-CNT nanofiltration membrane , 2018 .

[22]  Gang Xu,et al.  Ion sieving in graphene oxide membranes via cationic control of interlayer spacing , 2017, Nature.

[23]  Shaofan Li,et al.  Swelling of Graphene Oxide Membranes in Aqueous Solution: Characterization of Interlayer Spacing and Insight into Water Transport Mechanisms. , 2017, ACS nano.

[24]  Avner Ronen,et al.  Electroconductive and electroresponsive membranes for water treatment , 2016 .

[25]  Avner Ronen,et al.  Polyaniline-Coated Carbon Nanotube Ultrafiltration Membranes: Enhanced Anodic Stability for In Situ Cleaning and Electro-Oxidation Processes. , 2016, ACS applied materials & interfaces.

[26]  B. Chaplin,et al.  Development and Characterization of Ultrafiltration TiO2 Magnéli Phase Reactive Electrochemical Membranes. , 2016, Environmental science & technology.

[27]  M. Bown,et al.  Electrically conductive polymers and composites for biomedical applications , 2015 .

[28]  P. Dutournié,et al.  How to use a multi-ionic transport model to fully predict rejection of mineral salts by nanofiltration membranes , 2012 .

[29]  Tracy L. Bucholz,et al.  Improving the electrical conductivity of polymer acid-doped polyaniline by controlling the template molecular weight , 2007 .

[30]  S. Bhattacharjee,et al.  Effect of Membrane Surface Roughness on Colloid−Membrane DLVO Interactions , 2003 .

[31]  A. Foissy,et al.  A comparison of membrane charge of a low nanofiltration ceramic membrane determined from ionic retention and tangential streaming potential measurements , 2002 .

[32]  W. Richard Bowen,et al.  Modelling the performance of membrane nanofiltration - critical assessment and model development , 2002 .

[33]  M. Afonso,et al.  Streaming potential measurements to assess the variation of nanofiltration membranes surface charge with the concentration of salt solutions , 2001 .

[34]  M. Elimelech,et al.  Surface Element Integration: A Novel Technique for Evaluation of DLVO Interaction between a Particle and a Flat Plate , 1997, Journal of colloid and interface science.

[35]  Nidal Hilal,et al.  CHARACTERISATION OF NANOFILTRATION MEMBRANES FOR PREDICTIVE PURPOSES - USE OF SALTS, UNCHARGED SOLUTES AND ATOMIC FORCE MICROSCOPY , 1997 .