Differentiation between electron transport sensing and proton motive force sensing by the Aer and Tsr receptors for aerotaxis

Aerotaxis (oxygen‐seeking) behaviour in Escherichia coli is a response to changes in the electron transport system and not oxygen per se. Because changes in proton motive force (PMF) are coupled to respiratory electron transport, it is difficult to differentiate between PMF, electron transport or redox, all primary candidates for the signal sensed by the aerotaxis receptors, Aer and Tsr. We constructed electron transport mutants that produced different respiratory H+/e– stoichiometries. These strains expressed binary combinations of one NADH dehydrogenase and one quinol oxidase. We then introduced either an aer or tsr mutation into each mutant to create two sets of electron transport mutants. In vivo H+/e– ratios for strains grown in glycerol medium ranged from 1.46 ± 0.18–3.04 ± 0.47, but rates of respiration and growth were similar. The PMF jump in response to oxygen was proportional to the H+/e– ratio in each set of mutants (r2 = 0.986–0.996). The length of Tsr‐mediated aerotaxis responses increased with the PMF jump (r2 = 0.988), but Aer‐mediated responses did not correlate with either PMF changes (r2 = 0.297) or the rate of electron transport (r2 = 0.066). Aer‐mediated responses were linked to NADH dehydrogenase I, although there was no absolute requirement. The data indicate that Tsr responds to changes in PMF, but strong Aer responses to oxygen are associated with redox changes in NADH dehydrogenase I.

[1]  I. Zhulin,et al.  PAS domain residues involved in signal transduction by the Aer redox sensor of Escherichia coli , 2000, Molecular microbiology.

[2]  J. Adler,et al.  Protein methylation in behavioural control mechanisms and in signal transduction , 1979, Nature.

[3]  M. Eisenbach,et al.  Minimal requirements for rotation of bacterial flagella , 1984, Journal of bacteriology.

[4]  V. Skulachev,et al.  The proton pump is a molecular engine of motile bacteria , 1978, Nature.

[5]  J. Adler Chemotaxis in Bacteria , 1966, Science.

[6]  Y. Anraku,et al.  The aerobic respiratory chain of Escherichia coli , 1987 .

[7]  I. Zhulin,et al.  The Aer protein and the serine chemoreceptor Tsr independently sense intracellular energy levels and transduce oxygen, redox, and energy signals for Escherichia coli behavior. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[8]  E. C. Slater,et al.  Oxidative phosphorylation and photophosphorylation. , 1977, Annual review of biochemistry.

[9]  M. Hayashi,et al.  Purification of NADH-ferricyanide dehydrogenase and NADH-quinone reductase from Escherichia coli membranes and their roles in the respiratory chain. , 1989, Biochimica et biophysica acta.

[10]  D. Koshland,et al.  Electron acceptor taxis and blue light effect on bacterial chemotaxis , 1979, Journal of bacteriology.

[11]  C Marschall,et al.  Molecular analysis of the regulation of csiD, a carbon starvation-inducible gene in Escherichia coli that is exclusively dependent on sigma s and requires activation by cAMP-CRP. , 1998, Journal of molecular biology.

[12]  H. Kaback,et al.  Electrochemical proton gradient in inverted membrane vesicles from Escherichia coli. , 1980, Biochemistry.

[13]  R. Gennis,et al.  Energetic efficiency of Escherichia coli: effects of mutations in components of the aerobic respiratory chain , 1993, Journal of bacteriology.

[14]  H. Kaback,et al.  NADH-ubiquinone oxidoreductases of the Escherichia coli aerobic respiratory chain. , 1987, Biochemistry.

[15]  Ann M Stock,et al.  Molecular Information Processing: Lessons from Bacterial Chemotaxis* , 2002, The Journal of Biological Chemistry.

[16]  Y. Imae,et al.  Thermosensing properties of Escherichia coli tsr mutants defective in serine chemoreception , 1988, Journal of bacteriology.

[17]  Jørgensen Bb Ecology of the bacteria of the sulphur cycle with special reference to anoxic-oxic interface environments. , 1982 .

[18]  H. Berg,et al.  Dynamics and energetics of flagellar rotation in bacteria. , 1982, Symposia of the Society for Experimental Biology.

[19]  M. Wikström Identification of the electron transfers in cytochrome oxidase that are coupled to proton-pumping , 1989, Nature.

[20]  P. Rich,et al.  Protonmotive Mechanism of Heme-Copper Oxidases , 1998, Journal of bioenergetics and biomembranes.

[21]  K. Makino,et al.  Dual regulation of the ugp operon by phosphate and carbon starvation at two interspaced promoters , 1991, Journal of bacteriology.

[22]  H. Berg,et al.  A protonmotive force drives bacterial flagella. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Jeffrey Green,et al.  Regulation of transcription at the ndh promoter of Escherichia coli by FNR and novel factors , 1994, Molecular microbiology.

[24]  B. Chance,et al.  Photochemical determinations of the oxidases of bacteria. , 1959, The Journal of biological chemistry.

[25]  P. Mitchell Coupling of Phosphorylation to Electron and Hydrogen Transfer by a Chemi-Osmotic type of Mechanism , 1961, Nature.

[26]  W. Hempfling,et al.  Oxygen-limited continuous culture and respiratory energy conservation in Escherichia coli , 1978, Journal of bacteriology.

[27]  Mark S. Johnson,et al.  Genetic Analysis of the HAMP Domain of the Aer Aerotaxis Sensor Localizes Flavin Adenine Dinucleotide-Binding Determinants to the AS-2 Helix , 2005, Journal of bacteriology.

[28]  A. Matin The molecular basis of carbon‐starvation‐induced general resistance in Escherichia coli , 1991, Molecular microbiology.

[29]  Holly J. Falk-Krzesinski,et al.  Genetic Analysis of the nuo Locus, Which Encodes the Proton-Translocating NADH Dehydrogenase inEscherichia coli , 1998, Journal of bacteriology.

[30]  R. Gennis,et al.  Energy transduction by cytochrome complexes in mitochondrial and bacterial respiration: the enzymology of coupling electron transfer reactions to transmembrane proton translocation. , 1994, Annual review of biochemistry.

[31]  R. Poole,et al.  Effects of sulphate-limited growth in continuous culture on the electron-transport chain and energy conservation in Escherichia coli K12. , 1975, The Biochemical journal.

[32]  I. Zhulin,et al.  PAS Domains: Internal Sensors of Oxygen, Redox Potential, and Light , 1999, Microbiology and Molecular Biology Reviews.

[33]  R. Gennis,et al.  Genomic replacement in Escherichia coli K-12 using covalently closed circular plasmid DNA. , 1990, Gene.

[34]  Megan L. Peach,et al.  Diagnostic cross‐linking of paired cysteine pairs demonstrates homologous structures for two chemoreceptor domains with low sequence identity , 2006, Protein science : a publication of the Protein Society.

[35]  G. L. Hazelbauer,et al.  Sites of covalent modification in Trg, a sensory transducer of Escherichia coli. , 1987, The Journal of biological chemistry.

[36]  A. Vinogradov,et al.  →H+/2e stoichiometry in NADH‐quinone reductase reactions catalyzed by bovine heart submitochondrial particles , 1999, FEBS letters.

[37]  R. Poole,et al.  The respiratory chains of Escherichia coli. , 1984, Microbiological reviews.

[38]  Y Imae,et al.  Quantitative measurements of proton motive force and motility in Bacillus subtilis , 1980, Journal of bacteriology.

[39]  I. Zhulin,et al.  Glycerol elicits energy taxis of Escherichia coli and Salmonella typhimurium , 1997, Journal of bacteriology.

[40]  M. Homma,et al.  Sensing of Cytoplasmic pH by Bacterial Chemoreceptors Involves the Linker Region That Connects the Membrane-spanning and the Signal-modulating Helices* , 2002, The Journal of Biological Chemistry.

[41]  J. Doyle,et al.  Robust perfect adaptation in bacterial chemotaxis through integral feedback control. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[42]  G. Unden,et al.  Alternative respiratory pathways of Escherichia coli: energetics and transcriptional regulation in response to electron acceptors. , 1997, Biochimica et biophysica acta.

[43]  G. Church,et al.  Methods for generating precise deletions and insertions in the genome of wild-type Escherichia coli: application to open reading frame characterization , 1997, Journal of bacteriology.

[44]  J. Adler,et al.  Chemotactic response of Escherichia coli to chemically synthesized amino acids , 1983, Journal of bacteriology.

[45]  V. Skulachev,et al.  H+/e- stoichiometry for NADH dehydrogenase I and dimethyl sulfoxide reductase in anaerobically grown Escherichia coli cells , 1996, Journal of bacteriology.

[46]  B L Taylor,et al.  Role of proton motive force in sensory transduction in bacteria. , 1983, Annual review of microbiology.

[47]  J.,et al.  The Purification and Characterization of the Cytochrome d Terminal Oxidase Complex of the Escherichia coli Aerobic Respiratory Chain * , 2022 .

[48]  Joanne I. Yeh,et al.  High-resolution structures of the ligand binding domain of the wild-type bacterial aspartate receptor. , 1996, Journal of molecular biology.

[49]  R M Macnab,et al.  Effects of pH and Repellent Tactic Stimuli on Protein Methylation Levels in Escherichia coli , 1982, Journal of bacteriology.

[50]  B. Jørgensen Ecology of the bacteria of the sulphur cycle with special reference to anoxic-oxic interface environments. , 1982, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[51]  J. S. Parkinson,et al.  Domain organization and flavin adenine dinucleotide-binding determinants in the aerotaxis signal transducer Aer of Escherichia coli. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[52]  I. Zhulin,et al.  Oxygen taxis and proton motive force in Azospirillum brasilense , 1996, Journal of bacteriology.

[53]  J. Adler A method for measuring chemotaxis and use of the method to determine optimum conditions for chemotaxis by Escherichia coli. , 1973, Journal of general microbiology.

[54]  B. L. Taylor,et al.  Bacillus cereus electron transport and proton motive force during aerotaxis , 1984, Journal of bacteriology.

[55]  A. Matin,et al.  Molecular and functional characterization of a carbon starvation gene of Escherichia coli. , 1991, Journal of molecular biology.

[56]  M. Alam,et al.  Aerotactic responses in bacteria to photoreleased oxygen. , 2002, FEMS microbiology letters.

[57]  V. Skulachev,et al.  Cytochrome d induction in Escherichia coli growing under unfavorable conditions , 1993, FEBS letters.

[58]  I. Zhulin,et al.  Behavioral responses of Escherichia coli to changes in redox potential. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[59]  I. Zhulin,et al.  PAS domain S-boxes in Archaea, Bacteria and sensors for oxygen and redox. , 1997, Trends in biochemical sciences.

[60]  D. Botstein,et al.  Advanced bacterial genetics , 1980 .

[61]  R. Gennis,et al.  Demonstration of separate genetic loci encoding distinct membrane-bound respiratory NADH dehydrogenases in Escherichia coli , 1993, Journal of bacteriology.

[62]  J. Cooper,et al.  Method of determining oxygen concentrations in biological media, suitable for calibration of the oxygen electrode. , 1970, Analytical biochemistry.

[63]  D. Canfield,et al.  Aerobic sulfate reduction in microbial mats. , 1991, Science.

[64]  M. Hunkapiller,et al.  Enzymatic deamidation of methyl-accepting chemotaxis proteins in Escherichia coli catalyzed by the cheB gene product. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[65]  A. Rebbapragada,et al.  The FAD-PAS domain as a sensor for behavioral responses in Escherichia coli. , 2001, Antioxidants & redox signaling.

[66]  J. Adler,et al.  Location of Genes for Motility and Chemotaxis on the Escherichia coli Genetic Map , 1969, Journal of bacteriology.

[67]  J. Adler,et al.  Genetic and biochemical properties of Escherichia coli mutants with defects in serine chemotaxis , 1980, Journal of bacteriology.

[68]  Mark S. Johnson,et al.  Signal Transduction in Prokaryotic PAS Domains , 2003 .

[69]  H. Berg The rotary motor of bacterial flagella. , 2003, Annual review of biochemistry.

[70]  R M Macnab,et al.  Proton chemical potential, proton electrical potential and bacterial motility. , 1980, Journal of molecular biology.

[71]  B. L. Taylor,et al.  Aerotaxis in Salmonella typhimurium: role of electron transport , 1981, Journal of bacteriology.

[72]  J. S. Parkinson,et al.  Chemotaxis in Escherichia coli: construction and properties of lambda tsr transducing phage , 1987, Journal of bacteriology.

[73]  R. Gennis How does cytochrome oxidase pump protons? , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[74]  S. Crews PAS Proteins: Regulators and Sensors of Development and Physiology , 2003, Springer US.

[75]  Mark S. Johnson,et al.  Topology and Boundaries of the Aerotaxis Receptor Aer in the Membrane of Escherichia coli , 2006, Journal of bacteriology.

[76]  J. Shioi,et al.  Signal transduction in chemotaxis to oxygen in Escherichia coli and Salmonella typhimurium , 1988, Journal of bacteriology.

[77]  J. S. Parkinson,et al.  Isolation and behavior of Escherichia coli deletion mutants lacking chemotaxis functions , 1982, Journal of bacteriology.

[78]  J. Shioi,et al.  Characterization of the Bacillus subtilis motile system driven by an artificially created proton motive force , 1979, Journal of bacteriology.

[79]  Igor B Zhulin,et al.  Aer and Tsr guide Escherichia coli in spatial gradients of oxidizable substrates. , 2003, Microbiology.

[80]  M. Wikström Two protons are pumped from the mitochondrial matrix per electron transferred between NADH and ubiquinone , 1984, FEBS letters.

[81]  R M Macnab,et al.  pH homeostasis in Escherichia coli: measurement by 31P nuclear magnetic resonance of methylphosphonate and phosphate. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[82]  D. Koshland,et al.  Surface structure recognized for covalent modification of the aspartate receptor in chemotaxis. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[83]  J. S. Parkinson,et al.  Copyright © 1997, American Society for Microbiology A Signal Transducer for Aerotaxis in Escherichia coli , 1997 .

[84]  J. M. Brice,et al.  Bacterial respiration-linked proton translocation and its relationship to respiratory-chain composition. , 1975, European journal of biochemistry.

[85]  B. Chance,et al.  Cytochrome o as a terminal oxidase and receptor for aerotaxis in Salmonella typhimurium , 1984, Journal of bacteriology.

[86]  H. Berg,et al.  Migration of bacteria in semisolid agar. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[87]  T. Friedrich,et al.  The respiratory complex I of bacteria, archaea and eukarya and its module common with membrane‐bound multisubunit hydrogenases , 2000, FEBS letters.

[88]  R. Gunsalus,et al.  Effect of microaerophilic cell growth conditions on expression of the aerobic (cyoABCDE and cydAB) and anaerobic (narGHJI, frdABCD, and dmsABC) respiratory pathway genes in Escherichia coli , 1996, Journal of bacteriology.

[89]  G. Unden,et al.  Changes in the proton potential and the cellular energetics of Escherichia coli during growth by aerobic and anaerobic respiration or by fermentation. , 1998, European journal of biochemistry.

[90]  Andrew Travers,et al.  DNA supercoiling — a global transcriptional regulator for enterobacterial growth? , 2005, Nature Reviews Microbiology.

[91]  Jeffrey H. Miller,et al.  A short course in bacterial genetics , 1992 .

[92]  J. S. Parkinson,et al.  Methylation-Independent Aerotaxis Mediated by the Escherichia coli Aer Protein , 2004, Journal of bacteriology.

[93]  G. Unden,et al.  The oxygen‐responsive transcriptional regulator FNR of Escherichia coli : the search for signals and reactions , 1997, Molecular microbiology.