Optimization of a laser ablation-inductively coupled plasma “time of flight” mass spectrometry system for short transient signal acquisition

Abstract Simultaneous ion sampling and sequential detection offered by inductively coupled plasma ‘time of flight’ mass spectrometry (ICP-TOFMS) provides advantages for the analysis of short transient concentration-variable signals as produced in laser ablation. In order to investigate the capabilities of ICP-TOFMS in combination with an excimer laser ablation system, ablation studies on reference materials and geological samples were carried out. Various ICP-TOFMS parameters were optimized for laser-induced aerosols. Transverse rejection ion pulse was used to extend the dynamic range in concentration. A reduced volume ablation cell was designed and used in order to increase the sample density in the ICP. Results for 63 simultaneously measured isotopes (SRM 610 from NIST) lead to limits of detection in the 1–100 μg/g range for a 80 μm crater diameter (10 Hz, 1.2 mJ pulse energy). The reproducibility of signal ratios was determined to be better than 2% RSD for transient signals using 102 ms integration time. These optimized parameters were then used for the analysis of tin-rich fluid inclusions. Preliminary results of multielement analysis and isotopic ratio determinations on individual fluid inclusions (63 isotopes, 102 ms integration time) demonstrate the capabilities of ICP-TOFMS in combination with laser ablation.