Human Disease Models in Drosophila melanogaster and the Role of the Fly in Therapeutic Drug Discovery

The common fruit fly, Drosophila melanogaster, is a well studied and highly tractable genetic model organism for understanding molecular mechanisms of human diseases. Many basic biological, physiological, and neurological properties are conserved between mammals and D. melanogaster, and nearly 75% of human disease-causing genes are believed to have a functional homolog in the fly. In the discovery process for therapeutics, traditional approaches employ high-throughput screening for small molecules that is based primarily on in vitro cell culture, enzymatic assays, or receptor binding assays. The majority of positive hits identified through these types of in vitro screens, unfortunately, are found to be ineffective and/or toxic in subsequent validation experiments in whole-animal models. New tools and platforms are needed in the discovery arena to overcome these limitations. The incorporation of D. melanogaster into the therapeutic discovery process holds tremendous promise for an enhanced rate of discovery of higher quality leads. D. melanogaster models of human diseases provide several unique features such as powerful genetics, highly conserved disease pathways, and very low comparative costs. The fly can effectively be used for low- to high-throughput drug screens as well as in target discovery. Here, we review the basic biology of the fly and discuss models of human diseases and opportunities for therapeutic discovery for central nervous system disorders, inflammatory disorders, cardiovascular disease, cancer, and diabetes. We also provide information and resources for those interested in pursuing fly models of human disease, as well as those interested in using D. melanogaster in the drug discovery process.

[1]  David H. Hall,et al.  Visualization of fibrillar amyloid deposits in living, transgenic Caenorhabditis elegans animals using the sensitive amyloid dye, X-34 , 2001, Neurobiology of Aging.

[2]  R. Köster,et al.  Complex I deficiency and dopaminergic neuronal cell loss in parkin-deficient zebrafish (Danio rerio). , 2009, Brain : a journal of neurology.

[3]  Craig Montell,et al.  The TRP Superfamily of Cation Channels , 2005, Science's STKE.

[4]  L. Chinn,et al.  Evolutionary Conservation of Vertebrate Blood–Brain Barrier Chemoprotective Mechanisms in Drosophila , 2009, The Journal of Neuroscience.

[5]  W. Harris,et al.  Conditioned behavior in Drosophila melanogaster. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[6]  W. Bender,et al.  A Drosophila model of Parkinson's disease , 2000, Nature.

[7]  D. Campion,et al.  Cytoskeleton proteins are modulators of mutant tau-induced neurodegeneration in Drosophila. , 2007, Human molecular genetics.

[8]  Kyunghee Koh,et al.  A Drosophila model for age-associated changes in sleep:wake cycles , 2006, Proceedings of the National Academy of Sciences.

[9]  B. Oostra,et al.  DJ-1( PARK7), a novel gene for autosomal recessive, early onset parkinsonism , 2003, Neurological Sciences.

[10]  E. Kravitz,et al.  Targeted Manipulation of Serotonergic Neurotransmission Affects the Escalation of Aggression in Adult Male Drosophila melanogaster , 2010, PloS one.

[11]  Stephen M. Mount,et al.  The genome sequence of Drosophila melanogaster. , 2000, Science.

[12]  S. Benzer,et al.  From the gene to behavior. , 1971, JAMA.

[13]  C. Link,et al.  What have worm models told us about the mechanisms of neuronal dysfunction in human neurodegenerative diseases? , 2009, Molecular Neurodegeneration.

[14]  U. Banerjee,et al.  The little R cell that could. , 2004, International Journal of Developmental Biology.

[15]  A. Gitler,et al.  Discovery and characterization of three novel synuclein genes in zebrafish , 2008, Developmental dynamics : an official publication of the American Association of Anatomists.

[16]  B. Lu,et al.  PAR-1 Kinase Plays an Initiator Role in a Temporally Ordered Phosphorylation Process that Confers Tau Toxicity in Drosophila , 2004, Cell.

[17]  B. E. Staveley,et al.  parkin counteracts symptoms in a Drosophila model of Parkinson's disease , 2004, BMC Neuroscience.

[18]  E. Hafen,et al.  A Drosophila SH2-SH3 adaptor protein implicated in coupling the sevenless tyrosine kinase to an activator of Ras guanine nucleotide exchange, Sos , 1993, Cell.

[19]  Y. Yan,et al.  A comparative map of the zebrafish genome. , 2000, Genome research.

[20]  A. Ramasamy,et al.  Drosophila-based in vivo assay for the validation of inhibitors of the epidermal growth factor receptor/Ras pathway , 2008, Journal of Biosciences.

[21]  P. Leigh,et al.  Dose-ranging study of riluzole in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis/Riluzole Study Group II. , 1996, Lancet.

[22]  K. Siwicki,et al.  Drosophila Lacking dfmr1 Activity Show Defects in Circadian Output and Fail to Maintain Courtship Interest , 2002, Neuron.

[23]  D. Featherstone,et al.  A glial amino-acid transporter controls synapse strength and courtship in Drosophila , 2008, Nature Neuroscience.

[24]  P. Jin,et al.  RNA-Binding Proteins hnRNP A2/B1 and CUGBP1 Suppress Fragile X CGG Premutation Repeat-Induced Neurodegeneration in a Drosophila Model of FXTAS , 2007, Neuron.

[25]  J. Taylor,et al.  HDAC6 at the Intersection of Autophagy, the Ubiquitin-proteasome System, and Neurodegeneration , 2007, Autophagy.

[26]  B. Stockwell,et al.  Biologically active molecules that reduce polyglutamine aggregation and toxicity. , 2006, Human molecular genetics.

[27]  Olaf Riess,et al.  AlaSOPro mutation in the gene encoding α-synuclein in Parkinson's disease , 1998, Nature Genetics.

[28]  S. W. Davies,et al.  Exon 1 of the HD Gene with an Expanded CAG Repeat Is Sufficient to Cause a Progressive Neurological Phenotype in Transgenic Mice , 1996, Cell.

[29]  C. Thummel,et al.  Diabetic larvae and obese flies-emerging studies of metabolism in Drosophila. , 2007, Cell metabolism.

[30]  M. Scott,et al.  A nucleostemin family GTPase, NS3, acts in serotonergic neurons to regulate insulin signaling and control body size. , 2008, Genes & development.

[31]  James E Bear,et al.  A cell-based assay for aggregation inhibitors as therapeutics of polyglutamine-repeat disease and validation in Drosophila , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[32]  S. Goodwin,et al.  Compartmentalization of neuronal and peripheral serotonin synthesis in Drosophila melanogaster , 2007, Genes, brain, and behavior.

[33]  Todd A. Clason,et al.  Permeabilization of Drosophila embryos for introduction of small molecules. , 2010, Insect biochemistry and molecular biology.

[34]  D. Geschwind,et al.  Human Wild-Type Tau Interacts with wingless Pathway Components and Produces Neurofibrillary Pathology in Drosophila , 2002, Neuron.

[35]  Dan Garza,et al.  HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS , 2007, Nature.

[36]  Robin L Cooper,et al.  Influence of PCPA and MDMA (ecstasy) on physiology, development and behavior in Drosophila melanogaster , 2007, The European journal of neuroscience.

[37]  J. Littleton,et al.  Development of a Drosophila seizure model for in vivo high‐throughput drug screening , 2006, The European journal of neuroscience.

[38]  Daniela C. Zarnescu,et al.  Identification of small molecules rescuing fragile X syndrome phenotypes in Drosophila. , 2008, Nature chemical biology.

[39]  Giulio Tononi,et al.  Reduced sleep in Drosophila Shaker mutants , 2005, Nature.

[40]  C. Nichols,et al.  Identification of neuroprotective compounds of Caenorhabditis elegans dopaminergic neurons against 6-OHDA , 2007, Journal of Molecular Neuroscience.

[41]  M. Tanouye,et al.  Modifications of seizure susceptibility in Drosophila. , 2000, Journal of neurophysiology.

[42]  Bin Zhang,et al.  Neurodegeneration and defective neurotransmission in a Caenorhabditis elegans model of tauopathy , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[43]  Aaron T. Haselton,et al.  Adult Drosophila melanogaster as a model for the study of glucose homeostasis , 2010, Aging.

[44]  R. Greenspan,et al.  Drosophila D1 dopamine receptor mediates caffeine-induced arousal , 2008, Proceedings of the National Academy of Sciences.

[45]  K. Raley-Susman,et al.  The invertebrate microtubule-associated protein PTL-1 functions in mechanosensation and development in Caenorhabditis elegans , 2008, Development Genes and Evolution.

[46]  John Q. Trojanowski,et al.  Chaperone Suppression of α-Synuclein Toxicity in a Drosophila Model for Parkinson's Disease , 2001, Science.

[47]  K. Ocorr,et al.  Drug discovery through functional screening in the Drosophila heart. , 2009, Methods in molecular biology.

[48]  D. O'Dowd,et al.  Cholinergic Synaptic Transmission in Adult Drosophila Kenyon Cells In Situ , 2006, The Journal of Neuroscience.

[49]  K. Wada,et al.  [The ubiquitin-proteasome system and neurodegeneration]. , 2001, Rinsho shinkeigaku = Clinical neurology.

[50]  Tsonwin Hai,et al.  Nuclear DISC1 regulates CRE-mediated gene transcription and sleep homeostasis in the fruit fly , 2008, Molecular Psychiatry.

[51]  Jian Feng,et al.  Parkin Binds to α/β Tubulin and Increases their Ubiquitination and Degradation , 2003, The Journal of Neuroscience.

[52]  A. Spada,et al.  Polyglutamines Placed into Context , 2003, Neuron.

[53]  Alfonso Martinez Arias,et al.  Drosophila melanogaster and the development of biology in the 20th century. , 2008, Methods in molecular biology.

[54]  P. Pollak,et al.  LRRK2 G2019S as a cause of Parkinson's disease in North African Arabs. , 2006, The New England journal of medicine.

[55]  Y. Chernoff,et al.  Huntingtin toxicity in yeast model depends on polyglutamine aggregation mediated by a prion-like protein Rnq1 , 2002, The Journal of cell biology.

[56]  M. Tanouye,et al.  Seizures and failures in the giant fiber pathway of Drosophila bang- sensitive paralytic mutants , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[57]  Y. Jan,et al.  Multiple potassium–channel components are produced by alternative splicing at the Shaker locus in Drosophila , 1988, Nature.

[58]  Serotonin and insulin signaling team up to control growth in Drosophila. , 2008, Genes & development.

[59]  S. Hayashi,et al.  A nuclear GFP/β‐galactosidase fusion protein as a marker for morphogenesis in living Drosophila , 1996 .

[60]  F. Casares,et al.  E-cadherin missense mutations, associated with hereditary diffuse gastric cancer (HDGC) syndrome, display distinct invasive behaviors and genetic interactions with the Wnt and Notch pathways in Drosophila epithelia. , 2006, Human molecular genetics.

[61]  A Dürr,et al.  Causal relation between alpha-synuclein gene duplication and familial Parkinson's disease. , 2004, Lancet.

[62]  Jin Man Kim,et al.  Parkin negatively regulates JNK pathway in the dopaminergic neurons of Drosophila. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[63]  Ronald L. Davis,et al.  GABAA Receptor RDL Inhibits Drosophila Olfactory Associative Learning , 2007, Neuron.

[64]  Ronald L. Davis,et al.  Olfactory memory formation in Drosophila: from molecular to systems neuroscience. , 2005, Annual review of neuroscience.

[65]  George R Jackson,et al.  A Drosophila Model of Mutant Human Parkin-Induced Toxicity Demonstrates Selective Loss of Dopaminergic Neurons and Dependence on Cellular Dopamine , 2007, The Journal of Neuroscience.

[66]  K. Lim,et al.  Parkinson's disease-associated mutations in LRRK2 link enhanced GTP-binding and kinase activities to neuronal toxicity. , 2007, Human molecular genetics.

[67]  M. Jafari,et al.  Lamotrigine extends lifespan but compromises health span in Drosophila melanogaster , 2009, Biogerontology.

[68]  Thomas N. Sato,et al.  On the Mechanics of Cardiac Function of Drosophila Embryo , 2008, PloS one.

[69]  A. Guo,et al.  Study of tauopathies by comparing Drosophila and human tau in Drosophila , 2007, Cell and Tissue Research.

[70]  R. Nass,et al.  The Divalent Metal Transporter Homologues SMF-1/2 Mediate Dopamine Neuron Sensitivity in Caenorhabditis elegans Models of Manganism and Parkinson Disease* , 2009, The Journal of Biological Chemistry.

[71]  Ronald L. Davis,et al.  P{Switch}, a system for spatial and temporal control of gene expression in Drosophila melanogaster , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[72]  P. Evans,et al.  Insect octopamine receptors: a new classification scheme based on studies of cloned Drosophila G-protein coupled receptors , 2005, Invertebrate Neuroscience.

[73]  Michael Lardelli,et al.  Contribution of mGluR and Fmr1 functional pathways to neurite morphogenesis, craniofacial development and fragile X syndrome. , 2006, Human molecular genetics.

[74]  Andrew Smith Genome sequence of the nematode C-elegans: A platform for investigating biology , 1998 .

[75]  V. Lee,et al.  Are Ubiquitination Pathways Central to Parkinson's Disease? , 2003, Cell.

[76]  Leo X. Liu,et al.  Similar Patterns of Mitochondrial Vulnerability and Rescue Induced by Genetic Modification of α-Synuclein, Parkin, and DJ-1 in Caenorhabditis elegans* , 2005, Journal of Biological Chemistry.

[77]  T. Iwatsubo,et al.  Familial Parkinson Mutant α-Synuclein Causes Dopamine Neuron Dysfunction in Transgenic Caenorhabditis elegans* , 2006, Journal of Biological Chemistry.

[78]  Songsong Cao,et al.  Hypothesis-based RNAi screening identifies neuroprotective genes in a Parkinson's disease model , 2008, Proceedings of the National Academy of Sciences.

[79]  D. Nässel,et al.  Drosophila neuropeptides in regulation of physiology and behavior , 2010, Progress in Neurobiology.

[80]  Robin L. Cooper,et al.  Direct influence of serotonin on the larval heart of Drosophila melanogaster , 2006, Journal of Comparative Physiology B.

[81]  G M Rubin,et al.  A brief history of Drosophila's contributions to genome research. , 2000, Science.

[82]  Leslie Michels Thompson,et al.  A Rapid Cellular FRET Assay of Polyglutamine Aggregation Identifies a Novel Inhibitor , 2003, Neuron.

[83]  Michele Vendruscolo,et al.  Systematic In Vivo Analysis of the Intrinsic Determinants of Amyloid β Pathogenicity , 2007, PLoS biology.

[84]  Peri T Kurshan,et al.  Locomotor activity is regulated by D2‐like receptors in Drosophila: An anatomic and functional analysis , 2007, Developmental neurobiology.

[85]  C. Nichols,et al.  A Single Dose of Lysergic Acid Diethylamide Influences Gene Expression Patterns within the Mammalian Brain , 2002, Neuropsychopharmacology.

[86]  Yves Grau,et al.  Glutamate and its metabotropic receptor in Drosophila clock neuron circuits , 2007, The Journal of comparative neurology.

[87]  H. Manev,et al.  γ-Aminobutyric acid B receptor 1 mediates behavior-impairing actions of alcohol in Drosophila: Adult RNA interference and pharmacological evidence , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[88]  H. Rockman,et al.  Gene Deletion Screen for Cardiomyopathy in Adult Drosophila Identifies a New Notch Ligand , 2010, Circulation research.

[89]  S. Hellberg,et al.  A zebrafish model of tauopathy allows in vivo imaging of neuronal cell death and drug evaluation. , 2009, The Journal of clinical investigation.

[90]  J Dausset,et al.  Expanded polyglutamines in Caenorhabditis elegans cause axonal abnormalities and severe dysfunction of PLM mechanosensory neurons without cell death , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[91]  Michael Simons,et al.  Branching morphogenesis. , 2008, Circulation research.

[92]  M. Frasch,et al.  Genetic and Genomic Dissection of Cardiogenesis in the Drosophila Model , 2010, Pediatric Cardiology.

[93]  R. Nusse,et al.  Ablation of Insulin-Producing Neurons in Flies: Growth and Diabetic Phenotypes , 2002, Science.

[94]  M. Zalokar,et al.  Permeabilization of Drosophila eggs. , 1973, Developmental biology.

[95]  J. Kumar Retinal determination the beginning of eye development. , 2010, Current topics in developmental biology.

[96]  S Lovestone,et al.  GSK-3β inhibition reverses axonal transport defects and behavioural phenotypes in Drosophila , 2004, Molecular Psychiatry.

[97]  Jay Hirsh,et al.  Stereotypic behavioral responses to free-base cocaine and the development of behavioral sensitization in Drosophila , 1998, Current Biology.

[98]  R. Greenspan,et al.  Neurohormonal and neuromodulatory control of sleep in Drosophila. , 2007, Cold Spring Harbor symposia on quantitative biology.

[99]  Joseph A. Izatt,et al.  In Vivo Imaging of the Adult Drosophila melanogaster Heart With Real-Time Optical Coherence Tomography , 2006 .

[100]  K. Fischbeck,et al.  Toxic Proteins in Neurodegenerative Disease , 2002, Science.

[101]  K. Furukubo-Tokunaga Modeling schizophrenia in flies. , 2009, Progress in brain research.

[102]  J. Berg Genome sequence of the nematode C. elegans: a platform for investigating biology. , 1998, Science.

[103]  A. Alikaşifoğlu,et al.  A Novel Sulfonylurea Receptor Family Member Expressed in the Embryonic Drosophila Dorsal Vessel and Tracheal System* , 1999, The Journal of Biological Chemistry.

[104]  N. Silverman,et al.  Fighting Infection Fly-Style , 2007, Fly.

[105]  Y. Hamasaka,et al.  GABA modulates Drosophila circadian clock neurons via GABAB receptors and decreases in calcium. , 2005, Journal of neurobiology.

[106]  J. Hoffmann,et al.  NF-kappaB in the immune response of Drosophila. , 2009, Cold Spring Harbor perspectives in biology.

[107]  Gonçalo R. Abecasis,et al.  Genetic variants regulating ORMDL3 expression contribute to the risk of childhood asthma , 2007, Nature.

[108]  E. Rulifson,et al.  Conserved mechanisms of glucose sensing and regulation by Drosophila corpora cardiaca cells , 2004, Nature.

[109]  David J. Anderson,et al.  Two Different Forms of Arousal in Drosophila Are Oppositely Regulated by the Dopamine D1 Receptor Ortholog DopR via Distinct Neural Circuits , 2009, Neuron.

[110]  G. Mardon,et al.  Whole‐mount analysis reveals normal numbers of dopaminergic neurons following misexpression of α‐Synuclein in Drosophila , 2005, Genesis.

[111]  N. Ishida,et al.  Circadian Phenotypes of Drosophila Fragile X Mutants in Alternative Genetic Backgrounds , 2008, Zoological science.

[112]  H. Lehrach,et al.  Identification of benzothiazoles as potential polyglutamine aggregation inhibitors of Huntington's disease by using an automated filter retardation assay , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[113]  Karen Ocorr,et al.  A Global In Vivo Drosophila RNAi Screen Identifies NOT3 as a Conserved Regulator of Heart Function , 2010, Cell.

[114]  A Jamie,et al.  Branching Morphogenesis , 2004 .

[115]  Karen Ocorr,et al.  Age-related cardiac disease model of Drosophila , 2007, Mechanisms of Ageing and Development.

[116]  T. Tully,et al.  Human amyloid precursor protein ameliorates behavioral deficit of flies deleted for appl gene , 1992, Neuron.

[117]  M Gribskov,et al.  A systematic analysis of human disease-associated gene sequences in Drosophila melanogaster. , 2001, Genome research.

[118]  T. Iwatsubo,et al.  A systematic RNAi screen reveals involvement of endocytic pathway in neuronal dysfunction in alpha-synuclein transgenic C. elegans. , 2008, Human molecular genetics.

[119]  R. Cagan,et al.  Drosophila models for cancer research. , 2006, Current opinion in genetics & development.

[120]  Iva Greenwald,et al.  Presenilin is required for activity and nuclear access of Notch in Drosophila , 1999, Nature.

[121]  R. Nussbaum,et al.  Hereditary Early-Onset Parkinson's Disease Caused by Mutations in PINK1 , 2004, Science.

[122]  T. Tully,et al.  Ethanol Intoxication in Drosophila: Genetic and Pharmacological Evidence for Regulation by the cAMP Signaling Pathway , 1998, Cell.

[123]  H. Manev,et al.  Drosophila metabolize 1,4-butanediol into γ-hydroxybutyric acid in vivo , 2003 .

[124]  A. Schapira,et al.  Uniting Chinese across Asia: the LRRK2 Gly2385Arg risk variant , 2008, European journal of neurology.

[125]  M. Goldenberg,et al.  Overview of drugs used for epilepsy and seizures: etiology, diagnosis, and treatment. , 2010, P & T : a peer-reviewed journal for formulary management.

[126]  A. Pack,et al.  Modafinil maintains waking in the fruit fly drosophila melanogaster. , 2003, Sleep.

[127]  D. Nelson,et al.  The Drosophila FMRP and LARK RNA-Binding Proteins Function Together to Regulate Eye Development and Circadian Behavior , 2008, The Journal of Neuroscience.

[128]  R. Blakely,et al.  Dopaminergic neuronal loss and motor deficits in Caenorhabditis elegans overexpressing human α‐synuclein , 2003, Journal of neurochemistry.

[129]  Robert L. Nussbaum,et al.  Mutation in the α-Synuclein Gene Identified in Families with Parkinson's Disease , 1997 .

[130]  R. Durbin,et al.  Analysis of protein domain families in Caenorhabditis elegans. , 1997, Genomics.

[131]  Nicholas J Kuklinski,et al.  Micellar capillary electrophoresis--electrochemical detection of neurochemicals from Drosophila. , 2010, Journal of separation science.

[132]  C. Nichols,et al.  Drosophila melanogaster neurobiology, neuropharmacology, and how the fly can inform central nervous system drug discovery. , 2006, Pharmacology & therapeutics.

[133]  N. Perrimon,et al.  Evidence that stem cells reside in the adult Drosophila midgut epithelium , 2006, Nature.

[134]  D. Housman,et al.  Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila , 2001, Nature.

[135]  M. Tsang Zebrafish: A tool for chemical screens. , 2010, Birth defects research. Part C, Embryo today : reviews.

[136]  G. Christofori,et al.  The role of the cell-adhesion molecule E-cadherin as a tumour-suppressor gene. , 1999, Trends in biochemical sciences.

[137]  C. Link,et al.  In Vivo Aggregation of β‐Amyloid Peptide Variants , 1998 .

[138]  V. Kilman,et al.  The GABAA Receptor RDL Acts in Peptidergic PDF Neurons to Promote Sleep in Drosophila , 2009, Current Biology.

[139]  Carolyn Hutter,et al.  Association Between the Ubiquitin Carboxyl-Terminal Esterase L1 Gene (UCHL1) S18Y Variant and Parkinson's Disease: A HuGE Review and Meta-Analysis , 2009, American journal of epidemiology.

[140]  M. Reith,et al.  The importance of company: Na+ and Cl- influence substrate interaction with SLC6 transporters and other proteins. , 2006, Handbook of experimental pharmacology.

[141]  Andrew J. Schroeder,et al.  Drosophila Fragile X Protein, DFXR, Regulates Neuronal Morphology and Function in the Brain , 2002, Neuron.

[142]  R. Krüger,et al.  Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson's disease. , 1998, Nature genetics.

[143]  Joel Ryan,et al.  Impaired dopaminergic neuron development and locomotor function in zebrafish with loss of pink1 function , 2010, The European journal of neuroscience.

[144]  M. Birnbaum,et al.  Regulation of Fat Cell Mass by Insulin in Drosophila melanogaster , 2009, Molecular and Cellular Biology.

[145]  C. Link,et al.  AIP-1 ameliorates beta-amyloid peptide toxicity in a Caenorhabditis elegans Alzheimer's disease model. , 2009, Human molecular genetics.

[146]  M. Tanouye,et al.  Potassium bromide, an anticonvulsant, is effective at alleviating seizures in the Drosophila bang-sensitive mutant bang senseless , 2004, Brain Research.

[147]  Ronald L. Davis,et al.  Gene expression systems in Drosophila: a synthesis of time and space. , 2004, Trends in genetics : TIG.

[148]  T. Hoppe,et al.  A Caenorhabditis elegans Parkin mutant with altered solubility couples alpha-synuclein aggregation to proteotoxic stress. , 2005, Human molecular genetics.

[149]  K. Caldwell,et al.  C. elegans as a model organism to investigate molecular pathways involved with Parkinson's disease , 2010, Developmental dynamics : an official publication of the American Association of Anatomists.

[150]  Sheng-Ping L. Hwang,et al.  Recapitulation of zebrafish sncga expression pattern and labeling the habenular complex in transgenic zebrafish using green fluorescent protein reporter gene , 2009, Developmental dynamics : an official publication of the American Association of Anatomists.

[151]  M. Geyer,et al.  Developing translational animal models for symptoms of schizophrenia or bipolar mania , 2008, Neurotoxicity Research.

[152]  T. Roeder,et al.  Molecular architecture of the fruit fly's airway epithelial immune system , 2008, BMC Genomics.

[153]  A. Young,et al.  A potent small molecule inhibits polyglutamine aggregation in Huntington's disease neurons and suppresses neurodegeneration in vivo. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[154]  P. Auluck,et al.  Pharmacological prevention of Parkinson disease in Drosophila , 2002, Nature Medicine.

[155]  Ann-Shyn Chiang,et al.  Specific requirement of NMDA receptors for long-term memory consolidation in Drosophila ellipsoid body , 2007, Nature Neuroscience.

[156]  Jian Feng,et al.  Parkin Increases Dopamine Uptake by Enhancing the Cell Surface Expression of Dopamine Transporter* , 2004, Journal of Biological Chemistry.

[157]  R. Cooper,et al.  Monitoring Heart Function in Larval Drosophila melanogaster for Physiological Studies , 2009, Journal of visualized experiments : JoVE.

[158]  J. Izatt,et al.  Images in cardiovascular medicine: in vivo imaging of the adult Drosophila melanogaster heart with real-time optical coherence tomography. , 2006, Circulation.

[159]  J. Dowling,et al.  Small molecule developmental screens reveal the logic and timing of vertebrate development. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[160]  M. Konsolaki,et al.  A model for studying Alzheimer's Aβ42-induced toxicity in Drosophila melanogaster , 2004, Molecular and Cellular Neuroscience.

[161]  Troy Zars,et al.  Serotonin is necessary for place memory in Drosophila , 2008, Proceedings of the National Academy of Sciences.

[162]  B. Oostra,et al.  Reduction in fragile X related 1 protein causes cardiomyopathy and muscular dystrophy in zebrafish , 2009, Journal of Experimental Biology.

[163]  E Sullivan,et al.  Measurement of [Ca2+] using the Fluorometric Imaging Plate Reader (FLIPR). , 1999, Methods in molecular biology.

[164]  D. Gubb,et al.  Intraneuronal Abeta, non-amyloid aggregates and neurodegeneration in a Drosophila model of Alzheimer's disease. , 2005, Neuroscience.

[165]  Qian-Quan Sun,et al.  Major defects in neocortical GABAergic inhibitory circuits in mice lacking the fragile X mental retardation protein , 2007, Neuroscience Letters.

[166]  Li Qian,et al.  Genetic control of heart function and aging in Drosophila. , 2007, Trends in cardiovascular medicine.

[167]  R. Greenspan,et al.  Where Can I Find out More? , 2022 .

[168]  S. Lovestone,et al.  Over-expression of tau results in defective synaptic transmission in Drosophila neuromuscular junctions , 2005, Neurobiology of Disease.

[169]  C. Nichols 5‐HT2 receptors in Drosophila are expressed in the brain and modulate aspects of circadian behaviors , 2007, Developmental neurobiology.

[170]  S. Haggarty,et al.  Zebrafish Behavioral Profiling Links Drugs to Biological Targets and Rest/Wake Regulation , 2010, Science.

[171]  J. Taylor,et al.  Flightless flies: Drosophila models of neuromuscular disease , 2010, Annals of the New York Academy of Sciences.

[172]  H. Richardson,et al.  Control of tumourigenesis by the Scribble/Dlg/Lgl polarity module , 2008, Oncogene.

[173]  Thomas Roeder,et al.  Drosophila in asthma research. , 2009, American journal of respiratory and critical care medicine.

[174]  Tian Xu,et al.  A Genetic Screen in Drosophila for Metastatic Behavior , 2003, Science.

[175]  J. Januschke,et al.  Drosophila asymmetric division, polarity and cancer , 2008, Oncogene.

[176]  H. Jäckle,et al.  Pre‐fibrillar α‐synuclein variants with impaired β‐structure increase neurotoxicity in Parkinson's disease models , 2009, The EMBO journal.

[177]  M Lappé,et al.  Genetic control. , 1972, The New England journal of medicine.

[178]  M. Tanouye,et al.  Seizure suppression by shakB2, a gap junction mutation in Drosophila. , 2006, Journal of neurophysiology.

[179]  D. Rubinsztein,et al.  Loss of PINK1 Function Affects Development and Results in Neurodegeneration in Zebrafish , 2008, The Journal of Neuroscience.

[180]  Hugo J. Bellen,et al.  100 years of Drosophila research and its impact on vertebrate neuroscience: a history lesson for the future , 2010, Nature Reviews Neuroscience.

[181]  R. Richards,et al.  Huntingtin-deficient zebrafish exhibit defects in iron utilization and development. , 2007, Human molecular genetics.

[182]  A. Sehgal,et al.  Identification of SLEEPLESS, a Sleep-Promoting Factor , 2008, Science.

[183]  Tim Tully,et al.  CREB and the discovery of cognitive enhancers , 2002, Journal of Molecular Neuroscience.

[184]  M. Fortini,et al.  Modeling Clinically Heterogeneous Presenilin Mutations with Transgenic Drosophila , 2006, Current Biology.

[185]  R. Cripps,et al.  Cardiac gene regulatory networks in Drosophila. , 2009, Biochimica et biophysica acta.

[186]  G. Rubin,et al.  Ras1 and a putative guanine nucleotide exchange factor perform crucial steps in signaling by the sevenless protein tyrosine kinase , 1991, Cell.

[187]  R. Plasterk,et al.  APL-1, a Caenorhabditis elegans protein related to the human β-amyloid precursor protein, is essential for viability , 2007, Proceedings of the National Academy of Sciences.

[188]  S. Benzer,et al.  Prandiology of Drosophila and the CAFE assay , 2007, Proceedings of the National Academy of Sciences.

[189]  R. Blakely,et al.  A genetic screen in Caenorhabditis elegans for dopamine neuron insensitivity to 6‐hydroxydopamine identifies dopamine transporter mutants impacting transporter biosynthesis and trafficking , 2005, Journal of neurochemistry.

[190]  U. Heberlein,et al.  Drugs, flies, and videotape: the effects of ethanol and cocaine on Drosophila locomotion , 2002, Current Opinion in Neurobiology.

[191]  S. Pimplikar,et al.  Amyloid precursor protein is required for convergent-extension movements during Zebrafish development. , 2009, Developmental biology.

[192]  K. Ocorr,et al.  Visualizing the beating heart in Drosophila. , 2009, Journal of visualized experiments : JoVE.

[193]  Simon C Watkins,et al.  Generation of FGF reporter transgenic zebrafish and their utility in chemical screens , 2007, BMC Developmental Biology.

[194]  U. Heberlein,et al.  Invertebrate models of drug abuse. , 2003, Journal of neurobiology.

[195]  S. Benzer,et al.  Development of the Drosophila retina, a neurocrystalline lattice. , 1976, Developmental biology.

[196]  C. Klämbt,et al.  Organization and Function of the Blood–Brain Barrier in Drosophila , 2008, The Journal of Neuroscience.

[197]  J. Taylor,et al.  Dynein light chain 1 is required for autophagy, protein clearance, and cell death in Drosophila , 2009, Proceedings of the National Academy of Sciences.

[198]  Richard M. Page,et al.  Intraneuronal Aβ, non-amyloid aggregates and neurodegeneration in a Drosophila model of Alzheimer’s disease , 2005, Neuroscience.

[199]  G. Tononi,et al.  Correlates of sleep and waking in Drosophila melanogaster. , 2000, Science.

[200]  N. Perrimon,et al.  γ‐Secretase/presenilin inhibitors for Alzheimer's disease phenocopy Notch mutations in Drosophila , 2003, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[201]  Nobutaka Hattori,et al.  Association of DJ-1 and parkin mediated by pathogenic DJ-1 mutations and oxidative stress. , 2005, Human molecular genetics.

[202]  J. Trojanowski,et al.  Chaperone suppression of alpha-synuclein toxicity in a Drosophila model for Parkinson's disease. , 2002, Science.

[203]  A. Woollard,et al.  RUNX factors in development: lessons from invertebrate model systems. , 2009, Blood cells, molecules & diseases.

[204]  Laura Feeney,et al.  Treatment with the antiepileptic drugs phenytoin and gabapentin ameliorates seizure and paralysis of Drosophila bang-sensitive mutants. , 2004, Journal of neurobiology.

[205]  J. Hirsh,et al.  Roles of Dopamine in Circadian Rhythmicity and Extreme Light Sensitivity of Circadian Entrainment , 2010, Current Biology.

[206]  G. Torres,et al.  Activating properties of cocaine and cocaethylene in a behavioral preparation of Drosophila melanogaster , 1998, Synapse.

[207]  D. Campion,et al.  Drosophila models of human tauopathies indicate that Tau protein toxicity in vivo is mediated by soluble cytosolic phosphorylated forms of the protein , 2010, Journal of neurochemistry.

[208]  Oliver Bandmann,et al.  Genetic zebrafish models of neurodegenerative diseases , 2010, Neurobiology of Disease.

[209]  Peter G. Schultz,et al.  High-Throughput Chemical Screen Identifies a Novel Potent Modulator of Cellular Circadian Rhythms and Reveals CKIα as a Clock Regulatory Kinase , 2010, PLoS biology.

[210]  E. Rulifson,et al.  The origin of islet-like cells in Drosophila identifies parallels to the vertebrate endocrine axis , 2007, Proceedings of the National Academy of Sciences.

[211]  G. Gibson,et al.  Genetic Variation for Cardiac Dysfunction in Drosophila , 2007, PloS one.

[212]  K. Ocorr,et al.  Fluorescent labeling of Drosophila heart structures. , 2009, Journal of visualized experiments : JoVE.

[213]  M. Fortini,et al.  Neurogenic phenotypes and altered Notch processing in Drosophila Presenilin mutants , 1999, Nature.

[214]  U. Langheinrich,et al.  Zebrafish: a new model on the pharmaceutical catwalk. , 2003, BioEssays : news and reviews in molecular, cellular and developmental biology.

[215]  Y. Christen,et al.  Amyloid-β-Induced Pathological Behaviors Are Suppressed by Ginkgo biloba Extract EGb 761 and Ginkgolides in Transgenic Caenorhabditis elegans , 2006, The Journal of Neuroscience.

[216]  J. Hoffmann,et al.  The Drosophila systemic immune response: sensing and signalling during bacterial and fungal infections , 2007, Nature Reviews Immunology.

[217]  J. Lazo,et al.  Automated High-Content Live Animal Drug Screening Using C. elegans Expressing the Aggregation Prone Serpin α1-antitrypsin Z , 2010, PloS one.

[218]  J. Dubnau,et al.  Deconstructing Memory in Drosophila , 2005, Current Biology.

[219]  P. Jin,et al.  Pur α Binds to rCGG Repeats and Modulates Repeat-Mediated Neurodegeneration in a Drosophila Model of Fragile X Tremor/Ataxia Syndrome , 2007, Neuron.

[220]  J. C. Greene,et al.  Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[221]  R. Cagan,et al.  The emergence of order in the Drosophila pupal retina. , 1989, Developmental biology.

[222]  Janel O. Johnson,et al.  α-Synuclein Locus Triplication Causes Parkinson's Disease , 2003, Science.

[223]  T. Tabata,et al.  Androgen-Dependent Neurodegeneration by Polyglutamine-Expanded Human Androgen Receptor in Drosophila , 2002, Neuron.

[224]  Michael Lardelli,et al.  Zebrafish as a tool in Alzheimer's disease research. , 2011, Biochimica et biophysica acta.

[225]  R. Morimoto,et al.  Polyglutamine Proteins at the Pathogenic Threshold Display Neuron-Specific Aggregation in a Pan-Neuronal Caenorhabditis elegans Model , 2006, The Journal of Neuroscience.

[226]  N. Perrimon,et al.  Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. , 1993, Development.

[227]  Pietro Perona,et al.  High-throughput Ethomics in Large Groups of Drosophila , 2009, Nature Methods.

[228]  Ronald W. Davis,et al.  High-Resolution, In Vivo Magnetic Resonance Imaging of Drosophila at 18.8 Tesla , 2008, PloS one.

[229]  M. Lardelli,et al.  Developmental control of Presenilin1 expression, endoproteolysis, and interaction in zebrafish embryos. , 2003, Experimental cell research.

[230]  David H. Hall,et al.  Neurotoxin-induced degeneration of dopamine neurons in Caenorhabditis elegans , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[231]  Aaron J. Bell,et al.  Age-dependent cognitive impairment in a Drosophila Fragile X model and its pharmacological rescue , 2010, Biogerontology.

[232]  M. Zeidler,et al.  Transcriptional targets of Drosophila JAK/STAT pathway signalling as effectors of haematopoietic tumour formation , 2010, EMBO reports.

[233]  U. Heberlein,et al.  Dopamine modulates acute responses to cocaine, nicotine and ethanol in Drosophila , 2000, Current Biology.

[234]  Christian Néri,et al.  Resveratrol rescues mutant polyglutamine cytotoxicity in nematode and mammalian neurons , 2005, Nature Genetics.

[235]  W. A. Johnson,et al.  Drosophila DEG/ENaC pickpocket genes are expressed in the tracheal system, where they may be involved in liquid clearance , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[236]  J. Taylor,et al.  Repeat expansion disease: progress and puzzles in disease pathogenesis , 2010, Nature Reviews Genetics.

[237]  A Dürr,et al.  Causal relation between α-synuclein locus duplication as a cause of familial Parkinson's disease , 2004, The Lancet.

[238]  H. Rockman,et al.  Drosophila melanogaster as a model system for genetics of postnatal cardiac function. , 2008, Drug discovery today. Disease models.

[239]  W. Neckameyer A Trophic Role for Serotonin in the Development of a Simple Feeding Circuit , 2010, Developmental Neuroscience.

[240]  S. Hyman,et al.  Animal models of neuropsychiatric disorders , 2010, Nature Neuroscience.

[241]  Jisue Lee,et al.  Electroconvulsive Seizure Behavior in Drosophila: Analysis of the Physiological Repertoire Underlying a Stereotyped Action Pattern in Bang-Sensitive Mutants , 2002, The Journal of Neuroscience.

[242]  C. Ross,et al.  Parkinson's disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[243]  P. Leigh,et al.  Dose-ranging study of riluzole in amyotrophic lateral sclerosis , 1996, The Lancet.

[244]  S. Birman,et al.  Chronic Exposure to Rotenone Models Sporadic Parkinson's Disease in Drosophila melanogaster , 2004, The Journal of Neuroscience.

[245]  Rebecca B. Smith,et al.  Native Functions of the Androgen Receptor Are Essential to Pathogenesis in a Drosophila Model of Spinobulbar Muscular Atrophy , 2010, Neuron.

[246]  T. Nakajima,et al.  [Serotonin (5-HT)]. , 1978, Nihon rinsho. Japanese journal of clinical medicine.

[247]  C. Ross,et al.  Kinase activity of mutant LRRK2 mediates neuronal toxicity , 2006, Nature Neuroscience.

[248]  Shamik Dasgupta,et al.  A Neural Circuit Mechanism Integrating Motivational State with Memory Expression in Drosophila , 2009, Cell.

[249]  J. Abrams,et al.  Eiger and its receptor, Wengen, comprise a TNF-like system in Drosophila , 2003, Oncogene.

[250]  Lili Wan,et al.  Characterization of dFMR1, a Drosophila melanogaster Homolog of the Fragile X Mental Retardation Protein , 2000, Molecular and Cellular Biology.

[251]  Chiara Cirelli,et al.  The genetic and molecular regulation of sleep: from fruit flies to humans , 2009, Nature Reviews Neuroscience.

[252]  Ralph J Greenspan,et al.  Serotonin and neuropeptide F have opposite modulatory effects on fly aggression , 2007, Nature Genetics.

[253]  Gerald M. Rubin,et al.  Drosophila Fragile X-Related Gene Regulates the MAP1B Homolog Futsch to Control Synaptic Structure and Function , 2001, Cell.

[254]  S. Waddell Dopamine reveals neural circuit mechanisms of fly memory , 2010, Trends in Neurosciences.

[255]  S. Röhrig,et al.  Presenilin is required for proper morphology and function of neurons in C. elegans , 2000, Nature.

[256]  Richard G. Brusch,et al.  Disruption of Axonal Transport by Loss of Huntingtin or Expression of Pathogenic PolyQ Proteins in Drosophila , 2003, Neuron.

[257]  C. Nichols,et al.  Serotonin 5-HT2 and 5-HT1A-like receptors differentially modulate aggressive behaviors in Drosophila melanogaster , 2009, Neuroscience.

[258]  Thomas Meitinger,et al.  Mutations in LRRK2 Cause Autosomal-Dominant Parkinsonism with Pleomorphic Pathology , 2004, Neuron.

[259]  Pietro Perona,et al.  Automated monitoring and analysis of social behavior in Drosophila , 2009, Nature Methods.

[260]  P. Krogsgaard‐Larsen,et al.  GABA uptake inhibitors. Design, molecular pharmacology and therapeutic aspects. , 2000, Current pharmaceutical design.

[261]  K. Gengyo-Ando,et al.  Progressive neurodegeneration in C. elegans model of tauopathy , 2005, Neurobiology of Disease.

[262]  N. Trede,et al.  Immunology and zebrafish: spawning new models of human disease. , 2008, Developmental and comparative immunology.

[263]  B. Ganetzky,et al.  Indirect Suppression Involving Behavioral Mutants with Altered Nerve Excitability in DROSOPHILA MELANOGASTER. , 1982, Genetics.

[264]  B. Dickson,et al.  A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila , 2007, Nature.

[265]  J. Whitten The Post-embryonic Development of the Tracheal System in Drosophila melanogaster , 1957 .

[266]  M. Rand,et al.  Drosophotoxicology: the growing potential for Drosophila in neurotoxicology. , 2010, Neurotoxicology and teratology.

[267]  W. Quinn,et al.  Classical conditioning and retention in normal and mutantDrosophila melanogaster , 1985, Journal of Comparative Physiology A.

[268]  S. Minoshima,et al.  Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism , 1998, Nature.

[269]  J. Ronesi,et al.  Hallucinogens and Drosophila: linking serotonin receptor activation to behavior , 2002, Neuroscience.

[270]  R. Pulak,et al.  Techniques for analysis, sorting, and dispensing of C. elegans on the COPAS flow-sorting system. , 2006, Methods in molecular biology.

[271]  N. Franceschini,et al.  Les phénomènes de pseudopupille dans l'œil composé deDrosophila , 1971, Kybernetik.

[272]  Xiangzhong Zheng,et al.  Serotonin Modulates Circadian Entrainment in Drosophila , 2005, Neuron.

[273]  C. Link,et al.  Expression of human beta-amyloid peptide in transgenic Caenorhabditis elegans. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[274]  E. Pehek,et al.  Alpha-Synuclein Disrupted Dopamine Homeostasis Leads to Dopaminergic Neuron Degeneration in Caenorhabditis elegans , 2010, PloS one.

[275]  P. Verstreken,et al.  Suppression of Neurodegeneration and Increased Neurotransmission Caused by Expanded Full-Length Huntingtin Accumulating in the Cytoplasm , 2008, Neuron.

[276]  Adrian Bradu,et al.  Dual optical coherence tomography/fluorescence microscopy for monitoring of Drosophila melanogaster larval heart. , 2009, Journal of biophotonics.

[277]  Darren W. Williams,et al.  Tau and tau reporters disrupt central projections of sensory neurons in Drosophila , 2000, The Journal of comparative neurology.

[278]  D. Butterfield,et al.  Oxidative stress precedes fibrillar deposition of Alzheimer’s disease amyloid β-peptide (1–42) in a transgenic Caenorhabditis elegans model , 2003, Neurobiology of Aging.

[279]  Andrew Lees,et al.  Cloning of the Gene Containing Mutations that Cause PARK8-Linked Parkinson's Disease , 2004, Neuron.

[280]  G. Mardon,et al.  Drosophila parkin mutants have decreased mass and cell size and increased sensitivity to oxygen radical stress , 2004, Development.

[281]  N. Hattori,et al.  Pathogenetic mechanisms of parkin in Parkinson's disease , 2004, The Lancet.

[282]  M. MacDonald,et al.  Polyglutamine-mediated dysfunction and apoptotic death of a Caenorhabditis elegans sensory neuron. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[283]  T. Johnson,et al.  Paralogy and orthology of tyrosine kinases that can extend the life span of Caenorhabditis elegans. , 2000, Molecular biology and evolution.

[284]  E. Wanker,et al.  Evaluation of the benzothiazole aggregation inhibitors riluzole and PGL-135 as therapeutics for Huntington's disease , 2006, Neurobiology of Disease.

[285]  R. Richards,et al.  Selective neuronal requirement for huntingtin in the developing zebrafish , 2009, Human molecular genetics.