Computational Science - ICCS 2004

[1]  Erich Schikuta,et al.  Artificial Neural Networks and the Grid , 2004, International Conference on Computational Science.

[2]  Seungyong Lee,et al.  A New Authorization Model for Workflow Management System Using the RPI-RBAC Model , 2004, International Conference on Computational Science.

[3]  O. Gascuel,et al.  A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. , 2003, Systematic biology.

[4]  M. Gouy,et al.  A phylogenomic approach to bacterial phylogeny: evidence of a core of genes sharing a common history. , 2002, Genome research.

[5]  L. Koski,et al.  The Closest BLAST Hit Is Often Not the Nearest Neighbor , 2001, Journal of Molecular Evolution.

[6]  Michael M. Miyamoto,et al.  Molecular and Morphological Supertrees for Eutherian (Placental) Mammals , 2001, Science.

[7]  W. Doolittle,et al.  Phylogenetic analyses of two "archaeal" genes in thermotoga maritima reveal multiple transfers between archaea and bacteria. , 2001, Molecular biology and evolution.

[8]  R. Gupta,et al.  The phylogeny of proteobacteria: relationships to other eubacterial phyla and eukaryotes. , 2000, FEMS microbiology reviews.

[9]  Wei Qian,et al.  Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. , 2000, Molecular biology and evolution.

[10]  M. Gouy,et al.  HOBACGEN: database system for comparative genomics in bacteria. , 2000, Genome research.

[11]  Alan J. Laub,et al.  On a Newton-Like Method for Solving Algebraic Riccati Equations , 1999, SIAM J. Matrix Anal. Appl..

[12]  S. Salzberg,et al.  Evidence for lateral gene transfer between Archaea and Bacteria from genome sequence of Thermotoga maritima , 1999, Nature.

[13]  J. David,et al.  A simple model for avalanche multiplication including deadspace effects , 1999 .

[14]  J. Logsdon,et al.  Thermotoga heats up lateral gene transfer. , 1999, Current biology : CB.

[15]  O Gascuel,et al.  BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data. , 1997, Molecular biology and evolution.

[16]  K. Strimmer,et al.  Quartet Puzzling: A Quartet Maximum-Likelihood Method for Reconstructing Tree Topologies , 1996 .

[17]  Rosemary A. Renaut,et al.  The performance of preconditioned waveform relaxation techniques for pseudospectral methods , 1996 .

[18]  U. Helmke,et al.  Optimization and Dynamical Systems , 1994, Proceedings of the IEEE.

[19]  Bengt Fornberg,et al.  A practical guide to pseudospectral methods: Introduction , 1996 .

[20]  Leiba Rodman,et al.  Algebraic Riccati equations , 1995 .

[21]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[22]  William R. Taylor,et al.  The rapid generation of mutation data matrices from protein sequences , 1992, Comput. Appl. Biosci..

[23]  M. Ragan Phylogenetic inference based on matrix representation of trees. , 1992, Molecular phylogenetics and evolution.

[24]  B. Baum Combining trees as a way of combining data sets for phylogenetic inference, and the desirability of combining gene trees , 1992 .

[25]  G. Webb,et al.  A model of proliferating cell populations with correlation of mother-daughter mitotic times , 1991 .

[26]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[27]  Ernst Hairer,et al.  The numerical solution of differential-algebraic systems by Runge-Kutta methods , 1989 .

[28]  W. E. Roth,et al.  The equations $AX-YB=C$ and $AX-XB=C$ in matrices , 1952 .