Physicalizing cardiac blood flow data via 3D printing

Abstract Blood flow data from cardiac 4D Flow MRI (magnetic resonance imaging) holds much potential for research and diagnosis of flow-related diseases. However, understanding this data is quite challenging – after all, it is a volumetric vector field that changes over time. One helpful way to explore the data is by flow visualization, but most traditional flow visualizations are designed for 2D screens and thus suffer from limited depth perception and restricted screen space. We propose a novel slice-based physical model as a complementary method for visualizing the flow data. The design of this model respects the conventional method of viewing medical imagery (i.e., in cross sections) but has the added advantages of engaging one’s sense of touch, not suffering from screen space restrictions, and being easily fabricated by affordable fused deposition modelling (FDM) printers. We apply the slice-based technique to different representations of blood flow data and demonstrate that the technique is capable of transforming volumetric flow data into a tangible, easily fabricable model.

[1]  Daniel Acevedo Feliz,et al.  Color Rapid Prototyping for Diffusion-Tensor MRI Visualization , 2004, MICCAI.

[2]  Boudewijn P. F. Lelieveldt,et al.  Automatic Extraction of the 3D Left Ventricular Diastolic Transmitral Vortex Ring from 3D Whole-Heart Phase Contrast MRI Using Laplace-Beltrami Signatures , 2013, STACOM.

[3]  Hui Ma,et al.  Parallel Transport Approach to Curve Framing , 1995 .

[4]  Andrew Owens,et al.  MoSculp: Interactive Visualization of Shape and Time , 2018, UIST.

[5]  I. Valverde,et al.  A systematic review of image segmentation methodology, used in the additive manufacture of patient-specific 3D printed models of the cardiovascular system , 2016, JRSM cardiovascular disease.

[6]  Ottavio Alfieri,et al.  The vortex—an early predictor of cardiovascular outcome? , 2014, Nature Reviews Cardiology.

[7]  Bridger Herman Boxcars on Potatoes : Exploring the Design Language for Tangible Visualizations of Scalar Data Fields on 3 D Surfaces , 2018 .

[8]  Faisal Taher,et al.  Investigating the Use of a Dynamic Physical Bar Chart for Data Exploration and Presentation , 2017, IEEE Transactions on Visualization and Computer Graphics.

[9]  Bernhard Preim,et al.  Enhancing Slice-based Visualizations of Medical Volume Data , 2006, EuroVis.

[10]  Kanwal M. Farooqi,et al.  3D Printing and Heart Failure: The Present and the Future. , 2019, JACC. Heart failure.

[11]  Timo Ropinski,et al.  Interactive 4D MRI blood flow exploration and analysis using line predicates , 2016, SIGRAD.

[12]  Neil Cohn,et al.  The Visual Language of Comics: Introduction to the Structure and Cognition of Sequential Images. , 2013 .

[13]  Frederik L. Giesel,et al.  3D printing based on imaging data: review of medical applications , 2010, International Journal of Computer Assisted Radiology and Surgery.

[14]  Michael Markl,et al.  4D flow MRI , 2012, Journal of magnetic resonance imaging : JMRI.

[15]  M. Markl,et al.  4D flow cardiovascular magnetic resonance consensus statement , 2015, Journal of Cardiovascular Magnetic Resonance.

[16]  Yvonne Rogers,et al.  Physikit: Data Engagement Through Physical Ambient Visualizations in the Home , 2016, CHI.

[17]  Utkarsh Ayachit,et al.  The ParaView Guide: A Parallel Visualization Application , 2015 .

[18]  F. Rybicki,et al.  Medical 3D Printing for the Radiologist. , 2015, Radiographics : a review publication of the Radiological Society of North America, Inc.

[19]  Zhonghua Sun,et al.  A systematic review of 3-D printing in cardiovascular and cerebrovascular diseases , 2017, Anatolian journal of cardiology.

[20]  F. Rybicki,et al.  Applications of 3D printing in cardiovascular diseases , 2016, Nature Reviews Cardiology.

[21]  Christopher R. Johnson,et al.  Mathematics and Visualization , 2014, MICCAI 2014.

[22]  Faisal Taher,et al.  Exploring Interactions with Physically Dynamic Bar Charts , 2015, CHI.

[23]  P. Sengupta,et al.  The dynamic vortex of a beating heart: wring out the old and ring in the new! , 2014, Journal of the American College of Cardiology.

[24]  Jonathan D. Cohen,et al.  Similarity-Guided Streamline Placement with Error Evaluation , 2007, IEEE Transactions on Visualization and Computer Graphics.

[25]  Bart M. ter Haar Romeny,et al.  Visualization of 4D Blood‐Flow Fields by Spatiotemporal Hierarchical Clustering , 2012, Comput. Graph. Forum.

[26]  W. Tseng,et al.  Introduction to Cardiovascular Magnetic Resonance: Technical Principles and Clinical Applications. , 2016, Acta Cardiologica Sinica.

[27]  Bernhard Preim,et al.  Ieee Transactions on Visualization and Computer Graphics 1 Blood Flow Clustering and Applications in Virtual Stenting of Intracranial Aneurysms , 2022 .

[28]  Ahmed Hosny,et al.  Making data matter: Voxel printing for the digital fabrication of data across scales and domains , 2018, Science Advances.

[29]  Abhishek K Gupta,et al.  Numerical Methods using MATLAB , 2014, Apress.

[30]  Pierre Dragicevic,et al.  Opportunities and Challenges for Data Physicalization , 2015, CHI.

[31]  R. J. van der Geest,et al.  Advanced Analysis Techniques for Intra-cardiac Flow Evaluation from 4D Flow MRI , 2016, Current Radiology Reports.

[32]  Kai Lawonn,et al.  Coherent View-Dependent Streamlines for Understanding Blood Flow , 2014, EuroVis.

[33]  Shuai Leng,et al.  Three-dimensional Physical Modeling: Applications and Experience at Mayo Clinic. , 2015, Radiographics : a review publication of the Radiological Society of North America, Inc.

[34]  Silvia Born,et al.  Illustrative visualization of cardiac and aortic blood flow from 4D MRI data , 2013, 2013 IEEE Pacific Visualization Symposium (PacificVis).

[35]  Peng Li,et al.  Digital Design and Individually Fabricated Titanium Implants for the Reconstruction of Traumatic Zygomatico-Orbital Defects , 2013, The Journal of craniofacial surgery.

[36]  Kunihiko Taira,et al.  3D Printing of Fluid Flow Structures , 2017 .

[37]  Ali Mahdavi-Amiri,et al.  Physical Visualization of Geospatial Datasets , 2017, IEEE Computer Graphics and Applications.

[38]  Marcel Breeuwer,et al.  Exploration of 4D MRI Blood Flow using Stylistic Visualization , 2010, IEEE Transactions on Visualization and Computer Graphics.

[39]  Min Chen,et al.  Over Two Decades of Integration‐Based, Geometric Flow Visualization , 2010, Comput. Graph. Forum.

[40]  Albert de Roos,et al.  Assessment of viscous energy loss and the association with three‐dimensional vortex ring formation in left ventricular inflow: In vivo evaluation using four‐dimensional flow MRI , 2016, Magnetic Resonance in Medicine.

[41]  Bernhard Preim,et al.  The FLOWLENS: A Focus-and-Context Visualization Approach for Exploration of Blood Flow in Cerebral Aneurysms , 2011, IEEE Transactions on Visualization and Computer Graphics.

[42]  MING JIANG,et al.  Detection and Visualization of Vortices , 2005, The Visualization Handbook.

[43]  Boudewijn P F Lelieveldt,et al.  Vortex flow during early and late left ventricular filling in normal subjects: quantitative characterization using retrospectively-gated 4D flow cardiovascular magnetic resonance and three-dimensional vortex core analysis , 2014, Journal of Cardiovascular Magnetic Resonance.

[44]  Kai Lawonn,et al.  Clustering of Aortic Vortex Flow in Cardiac 4D PC-MRI Data , 2016, Bildverarbeitung für die Medizin.

[45]  Kai Lawonn,et al.  Generation and Visual Exploration of Medical Flow Data: Survey, Research Trends and Future Challenges , 2019, Comput. Graph. Forum.

[46]  Bernhard Preim,et al.  A Survey of Cardiac 4D PC‐MRI Data Processing , 2017, Comput. Graph. Forum.

[47]  Bernhard Preim,et al.  A Survey of Cardiac 4D PC-MRI Data Processing , 2015, VCBM.

[48]  Ali Mahdavi-Amiri,et al.  Landscaper: A Modeling System for 3D Printing Scale Models of Landscapes , 2018, Comput. Graph. Forum.

[49]  Bernhard Preim,et al.  Visual Exploration of Simulated and Measured Blood Flow , 2012, Scientific Visualization.

[50]  Jean-Michel Morel,et al.  From Gestalt Theory to Image Analysis: A Probabilistic Approach , 2007 .

[51]  R. Notley Short Papers , 1971, 2009 5th IEEE International Workshop on Visualizing Software for Understanding and Analysis.

[52]  Rubaiat Habib Kazi,et al.  ChronoFab: Fabricating Motion , 2016, CHI.

[53]  Joerg Meyer,et al.  Pathline predicates and unsteady flow structures , 2008, The Visual Computer.

[54]  Jinhee Jeong,et al.  On the identification of a vortex , 1995, Journal of Fluid Mechanics.

[55]  Ching-Kuang Shene,et al.  Hierarchical Streamline Bundles , 2012, IEEE Transactions on Visualization and Computer Graphics.