On the Power of Color Refinement

Color refinement is a classical technique used to show that two given graphs G and H are non-isomorphic; it is very efficient, although it does not succeed on all graphs. We call a graph G amenable to color refinement if the color-refinement procedure succeeds in distinguishing G from any non-isomorphic graph H. Babai, Erdős, and Selkow (1982) have shown that random graphs are amenable with high probability. We determine the exact range of applicability of color refinement by showing that amenable graphs are recognizable in time \(O((n+m)\log n)\), where n and m denote the number of vertices and the number of edges in the input graph.

[1]  Oleg Verbitsky,et al.  Universal Covers, Color Refinement, and Two-Variable Counting Logic: Lower Bounds for the Depth , 2014, 2015 30th Annual ACM/IEEE Symposium on Logic in Computer Science.

[2]  Kristian Kersting,et al.  Dimension Reduction via Colour Refinement , 2013, ESA.

[3]  Oleg Verbitsky,et al.  On Tinhofer's Linear Programming Approach to Isomorphism Testing , 2015, MFCS.

[4]  Chris Godsil,et al.  Compact graphs and equitable partitions , 1997 .

[5]  Maxime Crochemore,et al.  Partitioning a Graph in O(|A| log2 |V|) , 1982, Theoretical Computer Science.

[6]  Gottfried Tinhofer,et al.  Graph isomorphism and theorems of Birkhoff type , 1986, Computing.

[7]  R. H. Johnson Simple separable graphs , 1975 .

[8]  Kurt Mehlhorn,et al.  Weisfeiler-Lehman Graph Kernels , 2011, J. Mach. Learn. Res..

[9]  Roman Garnett,et al.  Power Iterated Color Refinement , 2014, AAAI.

[10]  Michael Koren Pairs of sequences with a unique realization by bipartite graphs , 1976, J. Comb. Theory, Ser. B.

[11]  László Babai,et al.  Canonical labelling of graphs in linear average time , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[12]  Pascal Schweitzer,et al.  Graphs Identified by Logics with Counting , 2015, MFCS.

[13]  T. L. Saaty,et al.  Finite graphs and networks : an introduction with applications , 1967 .

[14]  Gabriel Valiente,et al.  Algorithms on Trees and Graphs , 2002, Springer Berlin Heidelberg.

[15]  Edward R. Scheinerman,et al.  Fractional isomorphism of graphs , 1994, Discret. Math..

[16]  Rossella Petreschi,et al.  Recognition of Unigraphs through Superposition of Graphs , 2011, J. Graph Algorithms Appl..

[17]  E. Lander,et al.  Describing Graphs: A First-Order Approach to Graph Canonization , 1990 .

[18]  Oleg Verbitsky,et al.  Universal covers, color refinement, and two-variable logic with counting quantifiers: Lower bounds for the depth , 2014, ArXiv.

[19]  Regina Tyshkevich,et al.  Decomposition of graphical sequences and unigraphs , 2000, Discret. Math..

[20]  Paul S. Bonsma,et al.  Tight Lower and Upper Bounds for the Complexity of Canonical Colour Refinement , 2013, Theory of Computing Systems.

[21]  Paul Erdös,et al.  Random Graph Isomorphism , 1980, SIAM J. Comput..