Heterodyne Detection by Miniature Neon Indicator Lamp Glow Discharge Detectors

Miniature neon indicator lamps acting as glow discharge detectors (GDD) are candidates to serve as very inexpensive room-temperature Terahertz radiation detectors and as pixels in THz imaging systems. Previous experiments with GDD devices with THz waves showed good responsivity and noise equivalent power using direct detection. Significant improvement of detection performance is expected using heterodyne detection. Since THz sources are expensive and heterodyne detection requires two sources, we show here a proof of concept at low frequencies. In this paper, we compare the performance of GDDs in direct detection to the performance of GDDs in heterodyne detection at 10 GHz. The experimental results show that heterodyne detection is almost two orders of magnitude more sensitive than direct detection, and that in general sensitivity is inversely proportional to increasing local oscillator power. Heterodyne detection at 300 GHz is also demonstrated.

[1]  Nabil H. Farhat A plasma microwave power density detector , 1964 .

[2]  Burton J. Udelson,et al.  Effect of Microwave Signals Incident upon Different Regions of a dc Hydrogen Glow Discharge , 1957 .

[3]  Daniel Rozban,et al.  Terahertz detection mechanism of inexpensive sensitive glow discharge detectors , 2008 .

[4]  N. Kopeika,et al.  Observation of Cooper minima in excited- s -state photoionization cross sections in neon and argon , 1983 .

[5]  Nabil H. Farhat Optimization of millimeter-wave glow-discharge detectors , 1974 .

[6]  N. Kopeika Optogalvanic response to light: photon energy vs photon number. , 1982, Applied optics.

[7]  N. Kopeika,et al.  Dynamic nonoptogalvanic signal polarity and magnitude in prebreakdown gas discharges , 1985 .

[8]  N. Kopeika,et al.  Subnormal Glow Discharge Detection of Optical and Microwave Radiation , 1976, IEEE Transactions on Plasma Science.

[9]  A. Abramovich,et al.  THz Polarization Effects on Detection Responsivity of Glow Discharge Detectors (GDDs) , 2009, IEEE Sensors Journal.

[10]  F. Sizov,et al.  THz radiation sensors , 2010 .

[11]  N. S. Kopeika Glow Discharge Detection of Long Wavelength Electromagnetic Radiation: Cascade Ionization Process Internal Signal Gain and Temporal and Spectral Response Properties , 1978, IEEE Transactions on Plasma Science.

[12]  N. Kopeika,et al.  Laser-triggered dynamic breakdown of gases and laser-induced prebreakdown signals , 1985 .

[13]  A. D. Macdonald Microwave breakdown in gases , 1966 .

[14]  A. G. van Nie,et al.  A Simple and Rugged Wide-Band Gas Discharge Detector for Millimeter Waves , 1966 .

[15]  Daniel Rozban,et al.  Design of inexpensive diffraction limited focal plane arrays for millimeter wavelength and terahertz radiation using glow discharge detector pixels , 2008 .

[16]  N. Kopeika,et al.  Photoionization of excited atoms by low intensity light: experimental test of the effective cross section. , 1978, Applied optics.

[17]  Hongkyu Park,et al.  Terahertz Wave Imaging System Based on Glow Discharge Detector , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[18]  Daniel Rozban,et al.  Low-cost plasma terahertz heterodyne image detection , 2010, Optical Engineering + Applications.

[19]  N. Kopeika,et al.  Abnormal glow discharge detection of visible radiation. , 1976, Applied optics.

[20]  Norman S. Kopeika,et al.  A low-cost millimeter-wave glow-discharge detector , 1972 .

[21]  A. Tsvetkov,et al.  Time-resolved imaging of millimeter waves using visible continuum from the positive column of a Cs–Xe dc discharge , 2010 .

[22]  N. Kopeika,et al.  A near UV envelope detector in the prebreakdown regime based on photoionization of excited gas atoms , 1994 .

[23]  Norman S. Kopeika,et al.  Photoionization of excited atoms in dc gas discharges by low‐intensity light and its analogy to gas‐breakdown with high‐intensity lasers , 1979 .

[24]  N. Farhat,et al.  Video detection of millimeter waves with glow discharge tubes: Part I—Physical description; part II—Experimental results , 1975, IEEE Transactions on Electron Devices.

[25]  N. Kopeika,et al.  Improved detection of ultraviolet radiation with gas-filled phototubes through photoionization of excited atoms. , 1977, Applied optics.

[26]  A. Abramovich,et al.  Inexpensive THz Focal Plane Array Imaging Using Miniature Neon Indicator Lamps as Detectors , 2011, IEEE Sensors Journal.

[27]  N.S. Kopeika On the mechanism of glow discharge detection of microwave and millimeter-wave radiation , 1975, Proceedings of the IEEE.

[28]  N. Kopeika,et al.  Gas discharge response to light: dependence of linearity on space charge for optogalvanic and excited-state photoionization signals. , 1979, Applied optics.

[29]  N S Kopeika,et al.  Inexpensive detector for terahertz imaging. , 2007, Applied optics.

[30]  N. Kopeika,et al.  Effects of ionizing radiation on glow discharge detectors , 1976, Proceedings of the IEEE.